矩形ABCD與矩形ABEF有公共邊AB,且平面ABCD⊥平面ABEF,如圖,又FD=2,AD=1,EF=
3

(1)證明AE⊥平面FCB.
(2)求異面直線BD與AE所成角的余弦值.
(3)若M是棱AB的中點,在線段FD上是否存在一點N,使得MN∥平面FCB?證明你的結(jié)論.
分析:(1)根據(jù)兩個平面垂直的性質(zhì)定理證明BC⊥平面ABEF,可得 BC⊥AE,再證明矩形ABEF為正方形,可得 AE⊥BF,由直線和平面平行的判定定理證得AE⊥平面FCB.
(2)由于
DA
=
DB
+
BE
+
EA
,平方利用兩個向量的數(shù)量積的定義可得cos
DB 
EA
=-
6
4
,從而得到異面直線BD與AE所成角的余弦值
6
4

(3)分別取P,Q為DC及AF的中點,可證平面MPQ∥平面FBC,從而N為平面MPQ與FD的交點,易知N為FD的中點,由此得出結(jié)論.
解答:解:(1)證明:∵矩形ABCD與矩形ABEF有公共邊AB,平面ABCD⊥平面ABEF,可得BC⊥平面ABEF,∴BC⊥AE.
又FD=2,AD=1,EF=
3
,∴AF=
FD2-AD2
=
3
=EF,∴矩形ABEF為正方形,∴AE⊥BF.
而BC、BF是平面FCB內(nèi)的兩條相交直線,∴AE⊥平面FCB.
(2)∵
DA
=
DB
+
BE
+
EA
,平方可得 1=4+3+6+2
DB
BE
+2
DB
EA
+2
BE
EA
,
即 1=13+0+2×2
6
cos
DB 
,
EA
+2×
3
×
6
cos135°,
故 有 cos
DB 
,
EA
=-
3
6
12
=-
6
4
,∴異面直線BD與AE所成角的余弦值
6
4

(3)分別取P,Q為DC及AF的中點,得MP∥BC,且MQ∥BF,故平面MPQ∥平面FBC,從而N為平面MPQ與FD的交點,易知N為FD的中點,
故在線段FD上存在中點N,使得MN∥平面FCB成立.
點評:本題主要考查兩個向量的數(shù)量積的定義,證明線面垂直的方法,異面直線所成的角的定義和求法,直線和平面平行的判定定理的應用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,橢圓C0
x2
a2
+
y2
b2
=1(a>b>0
,a,b為常數(shù)),動圓C1x2+y2=
t
2
1
,b<t1<a.點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.
(Ⅰ)求直線AA1與直線A2B交點M的軌跡方程;
(Ⅱ)設動圓C2x2+y2=
t
2
2
與C0相交A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:
t
2
1
+
t
2
2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•遼寧)如圖,已知橢圓C0
x2
a2
+
y2
b2
=1(a>b>0,a,b為常數(shù))
,動圓C1x2+y2=
t
2
1
,b<t1<a
.點A1,A2分別為C0的左右頂點,C1與C0相交于A,B,C,D四點.
(I)求直線AA1與直線A2B交點M的軌跡方程;
(II)設動圓C2x2+y2=
t
2
2
與C0相交于A',B',C',D'四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A'B'C'D'的面積相等,證明:
t
2
1
+
t
2
2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD與矩形AB′C′D全等,且所在平面所成的二面角為α,記兩個矩形對角線的交點分別為Q,Q′,AB=a,AD=b.

(1)求證:QQ′∥平面ABB′;

(2)當b=2a,且α=時,求異面直線AC與DB′所成的角;

(3)當a>b,且AC⊥DB′時,求二面角α的余弦值(用a,b表示).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省珠海一中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

如圖,橢圓C,a,b為常數(shù)),動圓,b<t1<a.點A1,A2分別為C的左,右頂點,C1與C相交于A,B,C,D四點.
(Ⅰ)求直線AA1與直線A2B交點M的軌跡方程;
(Ⅱ)設動圓與C相交A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年遼寧省高考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,已知橢圓C,動圓C1.點A1,A2分別為C的左右頂點,C1與C相交于A,B,C,D四點.
(I)求直線AA1與直線A2B交點M的軌跡方程;
(II)設動圓C2與C0相交于A',B',C',D'四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A'B'C'D'的面積相等,證明:為定值.

查看答案和解析>>

同步練習冊答案