求滿足12+32+52+…+n2≥1000的最小正整數(shù)n的程序框圖如圖所示,則?處應(yīng)填入:輸出


  1. A.
    n-2
  2. B.
    n
  3. C.
    n-4
  4. D.
    n+2
A
分析:先假設(shè)最大正整數(shù)n使12+22+32+…+n2<1000成立,然后利用偽代碼進(jìn)行推理出最后n的值,從而得到我們需要輸出的結(jié)果.
解答:假設(shè)最大正整數(shù)n使12+22+32+…+n2<1000成立
此時(shí)的n滿足S<1000,則語句S=S+n2,n=n+1繼續(xù)運(yùn)行
此時(shí)n=n+2,屬于圖中輸出語句①處應(yīng)填入n-2
答案為n-2.
故選A.
點(diǎn)評:本題主要考查了當(dāng)型循環(huán)語句,以及偽代碼,算法在近兩年高考中每年都以小題的形式出現(xiàn),基本上是低起點(diǎn)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(
3
,-1)
,
b
=(
1
2
3
2
)

(1)證明:
a
b
;
(2)若存在實(shí)數(shù)k和t,滿足
x
=(t+2)
a
+(t2-t-5)
b
,
y
=-k
a
+4
b
,且
x
y
,試求出k關(guān)于t的關(guān)系式,即k=f(t);
(3)根據(jù)(2)的結(jié)論,試求出函數(shù)k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實(shí)數(shù)x∈[
1
2
,
3
2
],都有f(x)-2mx≤1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•合肥三模)已知函數(shù)fn(x)=
1
3
x3-
1
2
(n+1)x2+x(n∈N*)
,數(shù)列{an}滿足an+1=f'n(an),a1=3.
(1)求a2,a3,a4;
(2)根據(jù)猜想數(shù)列{an}的通項(xiàng)公式,并證明;
(3)求證:
1
(2a1-5)2
+
1
(2a2-5)2
+…+
1
(2an-5)2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=
3
2

(1)求f(
1
2
)
的值;
(2)若數(shù)列{an}滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)  (n∈{N
,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=
2
4an-5
 (n∈{N
,求數(shù)列{Cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)若存在實(shí)數(shù)k和t,滿足
x
=(t-2)
a
+(t2-t-5)
b
,
y
=-k
a
+4
b
,且
x
y
,求出k關(guān)于t的關(guān)系式k=f(t);
(2)根據(jù)(1)的結(jié)論,試求出函數(shù)k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案