【題目】執(zhí)行如圖所示的程序框圖,則“3<m<5”是“輸出i的值為5”的(

A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

【答案】B
【解析】解:第一次執(zhí)行循環(huán)體后,S=2,i=2,應(yīng)該不滿足退出循環(huán)的條件;
第二次執(zhí)行循環(huán)體后,S=6,i=3,應(yīng)該不滿足退出循環(huán)的條件;
第三次執(zhí)行循環(huán)體后,S=13,i=4,應(yīng)該不滿足退出循環(huán)的條件;
第四次執(zhí)行循環(huán)體后,S=23,i=5,應(yīng)該滿足退出循環(huán)的條件;
,解得:
故“3<m<5”是“輸出i的值為5”的必要不充分條件,
故選:B
【考點(diǎn)精析】根據(jù)題目的已知條件,利用程序框圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二年級(jí)有甲、乙、丙三個(gè)班參加社會(huì)實(shí)踐活動(dòng),高二年級(jí)老師要分到各個(gè)班級(jí)帶隊(duì),其中男女老師各一半,每次任選兩個(gè)老師,將其中一個(gè)老師分到甲班,如果這個(gè)老師是男老師,就將另一個(gè)老師分到乙班,否則就分到丙班,重復(fù)上述過(guò)程,直到所有老師都分到班級(jí),則

A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師

C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點(diǎn)M為PC的中點(diǎn),點(diǎn)E為BC邊上的點(diǎn),且 =λ.

(1)求證:平面ADM⊥平面PBC;
(2)是否存在實(shí)數(shù)λ,使得二面角P﹣DE﹣B的余弦值為 ?若存在,求出實(shí)數(shù)λ的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=滿足:對(duì)任意的實(shí)數(shù)x1x2,都有(x1-x2)[fx1)-fx2)]>0成立,則實(shí)數(shù)a的取值范圍是(。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.

(Ⅰ)求AB,(UA)∪(UB);

(Ⅱ)設(shè)集合C={x|m+1<x<2m-1},若BC=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=a2x+2ax-1(a>1,且a為常數(shù))在區(qū)間[-1,1]上的最大值為14.

(1)求fx)的表達(dá)式;

(2)求滿足fx)=7時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形的棱長(zhǎng)為1,點(diǎn)分別是棱的中點(diǎn).

(Ⅰ)求二面角的余弦值;

(Ⅱ)以為底面作正三棱柱,若此三棱柱另一底面三個(gè)頂點(diǎn)也都在該正方體的表面上,求這個(gè)正三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程是ρ=asinθ,直線l的參數(shù)方程是 (t為參數(shù))
(1)若a=2,直線l與x軸的交點(diǎn)是M,N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)直線l被圓C截得的弦長(zhǎng)等于圓C的半徑的 倍,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠計(jì)劃出售一種產(chǎn)品,經(jīng)銷人員并不是根據(jù)生產(chǎn)成本來(lái)確定這種產(chǎn)品的價(jià)格,而是通過(guò)對(duì)經(jīng)營(yíng)產(chǎn)品的零售商對(duì)于不同的價(jià)格情況下他們會(huì)進(jìn)多少貨進(jìn)行調(diào)查,通過(guò)調(diào)查確定了關(guān)系式P=-750x+15000,其中P為零售商進(jìn)貨的數(shù)量(單位:件),x為零售商支付的每件產(chǎn)品價(jià)格(單位:元).現(xiàn)估計(jì)生產(chǎn)這種產(chǎn)品每件的材料和勞動(dòng)生產(chǎn)費(fèi)用為4元,并且工廠生產(chǎn)這種產(chǎn)品的總固定成本為7000元(固定成本是除材料和勞動(dòng)費(fèi)用以外的其他費(fèi)用),為獲得最大利潤(rùn),工廠應(yīng)對(duì)零售商每件收取多少元?并求此時(shí)的最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案