5、過點(diǎn)(0,2)與拋物線y2=8x只有一個(gè)公共點(diǎn)的直線有( 。
分析:當(dāng)過點(diǎn)(0,2)的直線的斜率不存在時(shí),直線的方程為 x=0;當(dāng)過點(diǎn)(0,2)的直線的斜率等于0時(shí),直線的方程為y=2;當(dāng)過點(diǎn)(0,2)的直線斜率存在且不為零時(shí),設(shè)為k,把y=kx+2,代入拋物線方程,由判別式等于0,求得k的值,從而得到結(jié)論.
解答:解:拋物線y2=8x的焦點(diǎn)為(2,0),當(dāng)過點(diǎn)(0,2)的直線的斜率不存在時(shí),直線的方程為 x=0,即直線為y軸時(shí),
與拋物線y2=8x只有一個(gè)公共點(diǎn).
當(dāng)過點(diǎn)(0,2)的直線的斜率等于0時(shí),直線的方程為 y=2,與拋物線y2=8x只有一個(gè)公共點(diǎn).
當(dāng)過點(diǎn)(0,2)的直線斜率存在且不為零時(shí),設(shè)為k,那么直線方程為:y-2=kx,即:y=kx+2,代入拋物線方程
可得  k2x2+(4k-8)x+4=0,由判別式等于0 可得:64-64k=0,∴k=1,此時(shí),直線的方程為
y=kx+2.
綜上,滿足條件的直線共有3條,
故選B.
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想,求出直線的斜率,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省珠海市2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)文科試題 題型:044

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對(duì)每個(gè)正整數(shù)n,點(diǎn)Pn位于函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.

(1)求點(diǎn)Pn的坐標(biāo);

(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱軸都垂直于x軸,第n條拋物線Cn的頂點(diǎn)為Pn且過點(diǎn)Dn(0,n2+1),記過點(diǎn)Dn且與拋物線Cn相切的直線的斜率為kn,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年海中附校高三數(shù)學(xué)綜合模擬測(cè)試一 題型:044

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…對(duì)每個(gè)正整數(shù)n,點(diǎn)Pn位于函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.

(1)求點(diǎn)Pn的坐標(biāo);

(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱軸都垂直于x軸,第n條拋物線Cn的頂點(diǎn)為Pn且過點(diǎn)Dn(0,n2+1),記過點(diǎn)Dn且與拋物線Cn只有一個(gè)交點(diǎn)的直線的斜率為kn,求證:

(3)設(shè),等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007屆宜昌市一中高三數(shù)學(xué)(理)期末考試模擬試題-舊人教 題型:044

在直角坐標(biāo)平面上有一點(diǎn)列P1,(x1,y2),P2(x2,y2)…Pn(xn,yn)對(duì)一切正整數(shù)n,點(diǎn)Pn位于函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.

(1)求點(diǎn)Pn的坐標(biāo);

(2)設(shè)拋物線列c1,c2,c3,…,cn,…中的每一條的對(duì)稱軸都垂直于x軸,第n條拋物線cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1),記與拋物線cn相切于Dn的直線的斜率為kn,求:

(3)設(shè)S={x|x=2xn,n∈N,n≥1},T={y|y=4y,n≥1},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AnBn分別表示數(shù)列{an}和{bn}的前n項(xiàng)和,對(duì)任何正整數(shù)n,an=-,4Bn-12An=13n.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)設(shè)有拋物線列C1,C2,…,Cn,…,拋物線Cn(nN*)的對(duì)稱軸平行于y軸,頂點(diǎn)為(an,bn),且通過點(diǎn)Dn(0,n2+1),過點(diǎn)Dn且與拋物線Cn相切的直線的斜率為kn,求極限.

(3)設(shè)集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差數(shù)列{Cn}的任一項(xiàng)Cn∈X∩Y,C1是X∩Y中的最大數(shù),且-265<C10<-125,求{Cn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案