(2011•海淀區(qū)二模)已知△ABC的面積S=
3
,∠A=
π
3
,則
AB
AC
=
2
2
分析:由三角形的面積公式S△ABC=
1
2
|
AB
||
AC
 |sinA
=
3
可求|
AB
||
AC
|
,由向量的數(shù)量積的定義
AB
AC
=|
AB
||
AC
|cosA
可求
解答:解:∵S△ABC=
1
2
|
AB
||
AC
 |sinA
=
3

|
AB
||
AC
|=
2
3
3
2
=4
AB
AC
=|
AB
||
AC
|cosA
=
1
2
=2
故答案為:2
點(diǎn)評:本題主要考查了三角形的面積公式及向量的數(shù)量積的定義的應(yīng)用,屬于基礎(chǔ)性試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•海淀區(qū)二模)一個幾何體的三視圖如圖所示,則這個幾何體的體積為
π+1
π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•海淀區(qū)二模)已知函數(shù)f(x)=sinxcosx+sin2x.
(Ⅰ)求f(
π
4
)
的值;
(II)若x∈[0,
π
2
]
,求f(x)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•海淀區(qū)二模)如圖,已知⊙O的弦AB交半徑OC于點(diǎn)D,若AD=3,BD=2,且D為OC的中點(diǎn),則CD的長為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•海淀區(qū)二模)在一個正方體ABCD-A1B1C1D1中,P為正方形A1B1C1D1四邊上的動點(diǎn),O為底面正方形ABCD的中心,M,N分別為AB,BC中點(diǎn),點(diǎn)Q為平面ABCD內(nèi)一點(diǎn),線段D1Q與OP互相平分,則滿足
MQ
MN
的實數(shù)λ的值有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•海淀區(qū)二模)已知函數(shù)f(x)=(ax2-x)lnx-
12
ax2+x
.(a∈R).
(I)當(dāng)a=0時,求曲線y=f(x)在(e,f(e))處的切線方程(e=2.718…);
(II)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案