已知tan(α+
π
4
)=
3
5
,則tanα=
-
1
4
-
1
4
分析:將已知等式的左邊利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡,得到關(guān)于tanα的方程,求出方程的解即可得到tanα的值.
解答:解:∵tan(α+
π
4
)=
tanα+tan
π
4
1-tanαtan
π
4
=
tanα+1
1-tanα
=
3
5
,
∴5tanα+5=3-3tanα,即8tanα=-2,
解得:tanα=-
1
4

故答案為:-
1
4
點評:此題考查了兩角和與差的正切函數(shù)公式,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知tan(x+
π4
)=2
,則tan2x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)將形如
.
а11а12
а21а22
.
的符號稱二階行列式,現(xiàn)規(guī)定
.
а11а12
а21а22
.
=a11a22-a12a21
試計算二階行列式
.
cos
π
4
      1
1cos
π
3
.
的值;
(2)已知tan(
π
4
+a)=-
1
2
,求
sin2a-2cos2a
1+tana

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(
π
4
+α)=2,則tan(
π
4
-α)的值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(
π
4
+α)=
1
2
,則
sin2α-cos2α
1+cos2α
的值為
-
5
6
-
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浙江模擬)已知tan(α+
π
4
)=2,則tanα=( 。

查看答案和解析>>

同步練習冊答案