精英家教網 > 高中數學 > 題目詳情

如圖,兩個不全等的△ABC與△A1B1C1分別在兩個互相平行的平面內,它們的邊兩兩對應平行,求證:多面體A1B1C1-ABC為棱臺.

答案:
解析:

  證明:∵A1B1∥AB,∴A1B1與AB確定平面α.

  同理,B1C1與BC確定平面β,C1A1與CA確定平面γ.又∵△ABC與△A1B1C1不全等,∴A1B1≠AB.

  ∴平面α內的兩直線AA1與BB1必相交,不妨設交點為P.∴P∈AA1γ,P∈BB1β.

  ∴P∈β∩γ=CC1.∴AA1、BB1與CC1延長后相交于一點(如下圖所示).

  ∴P-ABC為三棱錐.

  ∵△A1B1C1是被平行于ABC所在的平面所截,

  ∴多面體A1B1C1-ABC為棱臺.


提示:

按棱臺的定義,要證明一個多面體是一個棱臺,首先應證明這里包含有一個棱錐,故必須首先證明AA1、BB1、CC1相交于一點,其次說明兩平面平行(這一點是已知的),進而可解決問題.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2
(3)給定三個正實數a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數學 來源:設計必修二數學蘇教版 蘇教版 題型:047

如圖所示,兩個不全等的△ABC與△A1B1C1分別在兩個互相平行的平面內,它們的邊兩兩對應平行.求證:多面體A1B1C1-ABC為棱臺.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年湖北省武漢二中高一(上)期末數學試卷(解析版) 題型:解答題

通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個正實數a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數學 來源:2007年上海市春季高考數學試卷(解析版) 題型:解答題

通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個正實數a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

同步練習冊答案