已知拋物線C:x2=4y,直線y=kx-1與C交于第一象限的兩點A、B,F(xiàn)是C的焦點,且|AF|=3|FB|,則k=( )
A.?
B.
C.
D.
【答案】分析:根據(jù)直線方程可知直線恒過定點C(0,-1),如圖過A、B分別作BQ⊥l于Q,AP⊥l于P,由|AF|=3|FB|,則|AP|=3|BQ|,進而推斷出|BE|=|BF|,進而求得點B的縱坐標,則點B的坐標可得,最后利用直線上的兩點求得直線的斜率.
解答:解:設(shè)拋物線C:x2=4y的準線為l:y=-1,
直線y=kx-1(k>0)恒過定點C(0,-1)
如圖過A、B分別作AP⊥l于P,BQ⊥l于Q,
由|AF|=3|FB|,則|AP|=3|BQ|,
點B為AC的一個三等份點,取CF的一個三等份點E(0,-),連接BE,
則|BE|=|AF|,
∴|BE|=|BF|,點B的縱坐標為,
故點B的坐標為(,
∴k==
故選D.
點評:本題主要考查了拋物線的簡單性質(zhì),考查了對拋物線的基礎(chǔ)知識的靈活運用,考查了數(shù)形結(jié)合的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0),其焦點F到準線的距離為
12

(1)試求拋物線C的方程;
(2)設(shè)拋物線C上一點P的橫坐標為t(t>0),過P的直線交C于另一點Q,交x軸于M,過點Q作PQ的垂線交C于另一點N,若MN是C的切線,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=
12
y
和定點P(1,2),A、B為拋物線C上的兩個動點,且直線PA和PB的斜率為非零的互為相反數(shù).
(I)求證:直線AB的斜率是定值;
(II)若拋物線C在A、B兩點處的切線相交于點M,求M的軌跡方程;
(III)若A′與A關(guān)于y軸成軸對稱,求直線A′B與y軸交點P的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py,過點A(0,4)的直線l交拋物線C于M,N兩點,且OM⊥ON.
(1)求拋物線C的方程;
(2)過點N作y軸的平行線與直線y=-4相交于點Q,若△MNQ是等腰三角形,求直線MN的方程.K.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=ay(a>0),斜率為k的直線l經(jīng)過拋物線的焦點F,交拋物線于A,B兩點,且拋物線上一點M(2
2
 , m) (m>1)
到點F的距離是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)過A,B兩點分別作拋物線的切線,這兩條切線的交點為點Q,求證:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒有公共點(其中m為常數(shù)).動點P是直線l上的任意一點,過P點引拋物線C的兩條切線,切點分別為M、N,且直線MN恒過點Q(1,1).
(1)求拋物線C的方程;
(2)已知O點為原點,連接PQ交拋物線C于A、B兩點,求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步練習(xí)冊答案