(2012•黃浦區(qū)二模)一名工人維護(hù)甲、乙兩臺(tái)獨(dú)立的機(jī)床,若在一小時(shí)內(nèi),甲、乙機(jī)床需要維護(hù)的概率分別為0.9、0.85,則兩臺(tái)機(jī)床都不需要維護(hù)的概率為
0.015
0.015
分析:由題意可得,甲臺(tái)機(jī)床都不需要維護(hù)的概率為1-0.9,乙臺(tái)機(jī)床不需要維護(hù)的概率為1-0.85,由此求得兩臺(tái)機(jī)床都不需要維護(hù)的概率.
解答:解:∵甲、乙機(jī)床需要維護(hù)的概率分別為0.9、0.85,故甲臺(tái)機(jī)床都不需要維護(hù)的概率為1-0.9,
乙臺(tái)機(jī)床不需要維護(hù)的概率為1-0.85,
則兩臺(tái)機(jī)床都不需要維護(hù)的概率為(1-0.9)(1-0.85)=0.015,
故答案為 0.015.
點(diǎn)評(píng):本題主要考查相互獨(dú)立事件的概率乘法公式,所求的事件與它的對(duì)立事件概率間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,則cos2α=
63
65
63
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)對(duì)n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點(diǎn)與y=fn+1(x)圖象的左端點(diǎn)重合;并回答這些端點(diǎn)在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個(gè)公共點(diǎn),試將kn表示成n的函數(shù).
(3)對(duì)n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當(dāng)m-1≤x≤m(n∈N*,且m=1,2,…,n)時(shí),f(x)=fm(x).試研究關(guān)于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實(shí)數(shù)解的個(gè)數(shù)(這里的kn是(2)中的kn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)如圖,已知圓柱的軸截面ABB1A1是正方形,C是圓柱下底面弧AB的中點(diǎn),C1是圓柱上底面弧A1B1的中點(diǎn),那么異面直線AC1與BC所成角的正切值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知函數(shù)f(x)=|x2-2ax+a|(x∈R),給出下列四個(gè)命題:
①當(dāng)且僅當(dāng)a=0時(shí),f(x)是偶函數(shù);
②函數(shù)f(x)一定存在零點(diǎn);
③函數(shù)在區(qū)間(-∞,a]上單調(diào)遞減;
④當(dāng)0<a<1時(shí),函數(shù)f(x)的最小值為a-a2
那么所有真命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)函數(shù)f(x)=log
1
2
(2x+1)
的定義域?yàn)?!--BA-->
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案