在半徑為2cm的圓中,面積為4cm2的扇形的圓心角是(  )rad.
A、1B、2C、3D、4
分析:利用扇形的面積公式求出扇形的弧長,然后求出扇形的圓心角.
解答:解:半徑為2cm的扇形,面積為4cm2的扇形中,設弧長為l,
1
2
l×2=4
,∴l(xiāng)=4,
∴扇形的圓心角為:
4
2
=2rad.
故選:B.
點評:本題考查扇形面積公式的應用,扇形圓心角的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了小、中、大三個同心圓,半徑分別為2cm,4cm,6cm,某人站在3m之外向此板投鏢,設投鏢擊中線上或沒有投中木板時都不算(可重投),問:
(Ⅰ)投中大圓內(nèi)的概率是多少?
(Ⅱ)投中小圓與中圓形成的圓環(huán)的概率是多少?
(Ⅲ)投中大圓之外的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在墻上掛著一塊邊長為16cm的正方形木板,上面畫了大、中、小三個同心圓,半徑分別為2cm、4cm、6cm,某人站在3m之外向此板投鏢,設投中線上或沒有投中木板時不算,可重投,問:

    (1)投中大圓內(nèi)的概率是多少?

    (2)投中小圓與中圓形成的圓環(huán)的概率是多少?

    (3)投中大圓之外的概率是多少?

   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在墻上掛著一塊邊長為16cm的正方形木板,上面畫了大、中、小三個同心圓,半徑分別為2cm、4cm、6cm,某人站在3m之外向此板投鏢,設投中線上或沒有投中木板時不算,可重投,問:

    (1)投中大圓內(nèi)的概率是多少?

    (2)投中小圓與中圓形成的圓環(huán)的概率是多少?

    (3)投中大圓之外的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

山姆的意大利餡餅屋中設有一個投鏢靶,該靶為正方形板.邊長為18cm,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當投鏢擊中半徑為1cm的最內(nèi)層圓域時,可得到一個大餡餅;當擊中半徑為1—2cm之間的環(huán)域時,可得到一個中餡餅;如果擊中2—3cm之間的環(huán)域,便得到一個小餡餅.如果擊中靶上的其他部分,則得不到餡餅,我們假定顧客都能投鏢中靶,并假設每個圓的周邊線沒有寬度,即投鏢不會擊中邊線,試求每位顧客贏得

    (1)一張大餡餅的概率;

    (2)一張中餡餅的概率;

    (3)一張小餡餅的概率;

    (4)得不到餡餅的概率.(精確到小數(shù)點后兩位)

      

查看答案和解析>>

同步練習冊答案