已知橢圓C的左、右焦點坐標(biāo)分別是,,離心率是,直線y=t橢圓C交與不同的兩點M,N,以線段為直徑作圓P,圓心為P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P與x軸相切,求圓心P的坐標(biāo);
(Ⅲ)設(shè)Q(x,y)是圓P上的動點,當(dāng)T變化時,求y的最大值.
【答案】分析:(Ⅰ)先根據(jù)離心率和焦半徑求得a,進(jìn)而根據(jù)a,b和c的關(guān)系求得c,則橢圓方程可得.
(Ⅱ)根據(jù)題意可知P的坐標(biāo),根據(jù)圓P與x軸相切求得x,則圓的半徑的表達(dá)式可得,進(jìn)而求得t,則點P的坐標(biāo)可得.
(Ⅲ)由(2)知圓P的方程,把點Q代入圓的方程,求得y和t的關(guān)系,設(shè)t=cosθ,利用兩角和公式化簡整理根據(jù)正弦函數(shù)的性質(zhì)求得y的最大值.
解答:解:(Ⅰ)因為,且,所以
所以橢圓C的方程為
(Ⅱ)由題意知p(0,t)(-1<t<1)

所以圓P的半徑為
解得所以點P的坐標(biāo)是(0,
(Ⅲ)由(Ⅱ)知,圓P的方程x2+(y-t)2=3(1-t2).因為點Q(x,y)在圓P上.所以
設(shè)t=cosθ,θ∈(0,π),則
當(dāng),即,且x=0,y取最大值2.
點評:本題主要考查了直線與圓錐曲線的綜合問題.考查了學(xué)生綜合分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案