設函數(shù)f(x)=x|x|+bx+c,給出下列四個命題:
①c=0時,y=f(x)是奇函數(shù);
②b=0,c>0時,方程f(x)=0只有一個實數(shù)根;
③y=f(x)的圖象關于(0,c)對稱;
④方程f(x)=0至多有兩個實根.
其中正確的命題個數(shù)是( 。
分析:對各個選項分別加以判斷:根據(jù)函數(shù)奇偶性的定義,得到是①真命題;根據(jù)函數(shù)的單調性與函數(shù)的值域,說明②是真命題;根據(jù)函數(shù)的圖象是由一個奇函數(shù)圖象平移而來,得到③是真命題;最后用一個反例推出④是假命題.由此可以選出正確答案.
解答:解:①當c=0時,函數(shù)f(x)=x|x|+bx,
∴函數(shù)f(-x)=-x|-x|+b-x=-(x|x|+bx)=-f(x)
∴函數(shù)y=f(x)為奇函數(shù);
②b=0,c>0時,因為函數(shù)在R上是增函數(shù),且值域為(-∞,+∞)
∴方程f(x)=0只有一個實數(shù)根
③由①知函數(shù)y=x|x|+bx為奇函數(shù),圖象關于原點對稱
y=f(x)的圖象是由它的圖象向上平移c個單位而得,
所以函數(shù)y=f(x)的圖象關于(0,c)對稱;
④當b=-1,c=0時,方程f(x)=0有三個實根:1,-1和0
因此④方程f(x)=0至多有兩個實根錯誤
綜合以上,說明①②③是正確的
故選C
點評:本題考查了函數(shù)的零點,也就是方程的根的個數(shù)的判斷,屬于中檔題.對函數(shù)奇偶性和單調性的充分理解,并用于二次函數(shù)當中,本題可以迎刃而解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數(shù),那么實數(shù)m的取值范圍是(  )
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案