已知函數(shù)數(shù)學(xué)公式,且函數(shù)f(x)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若f(B)=1,數(shù)學(xué)公式=數(shù)學(xué)公式,且a+c=4,試求b2的值.

解:(Ⅰ)=sinωx+cosωx=2sin(ωx+),
∵函數(shù)f(x)的最小正周期為π,
∴ω=2
∵f(x)=2sin(2x+);
(Ⅱ)在△ABC中,f(B)=1,則2sin(2B+)=1,∴2B+=,∴B=;
=,∴accos=,∴ac=3
∵a+c=4,∴a2+c2=16-6
∴b2=a2+c2-2accos=16-9
分析:(Ⅰ)將三角函數(shù)化簡(jiǎn),由函數(shù)f(x)的最小正周期求出ω的值,從而可得函數(shù)f(x)的解析式;
(Ⅱ)在△ABC中,f(B)=1,可求B=,根據(jù)=可得ac=3,利用a+c=4,可得a2+c2=16-6,利用余弦定理可求b2的值.
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn),考查三角函數(shù)的解析式的運(yùn)用,考查向量知識(shí),考查余弦定理,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+b(a>0,b∈R),x∈R
(1)若-1為f(x)=0的一個(gè)根,且函數(shù)f(x)的值域?yàn)閇-4,+∞),求f(x)的解析式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),h(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
ax3+  
1
2
bx2+cx

(1)若函數(shù)f(x)有三個(gè)零點(diǎn)x1,x2,x3,且x1+x2+x3=
9
2
,x
1
x3=-12
,且a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=-
1
2
a
,且3a>2c>2b,試問(wèn):導(dǎo)函數(shù)f(x)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱(chēng)函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿(mǎn)足以下三個(gè)條件:①f(0)=0;  ②f(
x
5
)=
1
2
f(x);  ③f(1-x)=1-f(x).則f(
4
5
)=
1
2
1
2
,f(
1
2013
)=
1
32
1
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱(chēng)函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿(mǎn)足以下三個(gè)條件:
①f(0)=0;  
f(
x
5
)=
1
2
f(x)
;  
③f(1-x)=1-f(x).
f(
4
5
)
=
1
2
1
2
,f(
1
12
)
=
1
4
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案