2.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2=4,S4=16,數(shù)列{bn}滿足bn=an+an+1,則數(shù)列{bn}的前9和T9=180.

分析 設(shè)等差數(shù)列{an}的公差為d,由bn=an+an+1,bn+1=an+1+an+2,可得bn+1-bn=an+1+an+2-an-an+1=2d為常數(shù),因此數(shù)列{bn}也為等差數(shù)列.根據(jù)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S2=4,S4=16,即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,因?yàn)閎n=an+an+1,所以bn+1=an+1+an+2,
兩式相減bn+1-bn=an+1+an+2-an-an+1=2d為常數(shù),
所以數(shù)列{bn}也為等差數(shù)列.
因?yàn)閧an}為等差數(shù)列,且S2=4,S4=16,所以b1=a1+a2=S2=4,b3=a3+a4=S4-S2=12,
所以等差數(shù)列{bn}的公差$2d=\frac{{{b_3}-{b_1}}}{2}=4$,
所以前n項(xiàng)和公式為${T_n}=4n+\frac{{({n-1})n}}{2}×4$=2n2+2n,
所以T9=180.
故答案為:180.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x3+ax2+bx+a2在x=-1處有極值8,則f(1)等于( 。
A.-4B.16C.-4或16D.16或18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知Z是復(fù)數(shù),|Z-2+i|=$\sqrt{3}$,則|z|的取值范圍[$\sqrt{5}-\sqrt{3}$,$\sqrt{5}+\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個正四面體的骰子,四個面分別寫有數(shù)字3,4,4,5,則將其投擲兩次,骰子與桌面接觸面上的數(shù)字之和的方差是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.sin(-870°)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$ 化簡后等于( 。
A.3$\overrightarrow{AB}$B.$\overrightarrow{BA}$C.$\overrightarrow{AB}$D.$\overrightarrow{CA}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=2sinθ,正方形ABCD的頂點(diǎn)都在C1上,且依次按逆時針方向排列,點(diǎn)A的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$).
(1)求點(diǎn)C的直角坐標(biāo);
(2)若點(diǎn)P在曲線C2:x2+y2=4上運(yùn)動,求|PB|2+|PC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.用數(shù)學(xué)歸納法證明:1+a+a2+…+an+1=$\frac{{1-}^{{a}^{n+2}}}{1-a}$(a≠1),在驗(yàn)證n=1時,左端計(jì)算所得的式子是( 。
A.1B.1+aC.1+a+a2D.1+a+a2+a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知雙曲線C的方程記為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),點(diǎn)P($\sqrt{3}$,0)在雙曲線上.離心率為e=2.
(1)求雙曲線方程;
(2)設(shè)雙曲線C的虛軸的上、下端點(diǎn)分別為B1,B2(如圖)點(diǎn)A、B在雙曲線上,且$\overrightarrow{{B}_{2}A}$=λ$\overrightarrow{{B}_{2}B}$,當(dāng)$\overrightarrow{{B}_{1}A}$•$\overrightarrow{{B}_{1}B}$=0時,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案