分析 (1)根據(jù)f(-x)=f(x),求得a的值.
(2)不等式即(3x-3)•(3x-$\frac{1}{3}$)<0,即 $\frac{1}{3}$<3x<3,由此求得x的范圍.
解答 解:(1)∵f(x)=3x-a×3-x是偶函數(shù),則f(-x)=f(x),即 3-x-a•3x=3x-a•3-x,
即(3-x-3x)=-a(3-x-3x),∴-a=1,即a=-1,f(x)=3x +3-x,
故答案為:-1.
(2)$f(x)<\frac{10}{3}$,即 3x +3-x <$\frac{10}{3}$,即 32x-$\frac{10}{3}$•3x+1<0,即(3x-3)•(3x-$\frac{1}{3}$)<0,
∴$\frac{1}{3}$<3x<3,∴-1<x<1.
故答案為:(-1,1)
點評 本題主要考查偶函數(shù)的定義和性質(zhì),解指數(shù)不等式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {3,5} | B. | {1,3,4,5,6,7,8} | C. | {2,8} | D. | {1,7} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a>b,c>d,則ac>bd | B. | 若ab≥0,則|a+b|=|a|+|b| | ||
C. | 若x>2,則函數(shù)y=x+$\frac{1}{x}$有最小值2 | D. | 若a<b<0,則a2<ab<b2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4+$\sqrt{5}$ | B. | 4-$\sqrt{5}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com