若曲線y=xa+2(a∈R)在點(1,3)處的切線經(jīng)過坐標(biāo)原點,則a=
 
分析:求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在x=1時的導(dǎo)數(shù),由點斜式寫出切線方程,代入原點坐標(biāo)求解a的值.
解答:解:由y=xa+2(a∈R),得
y′=a•xa-1,∴y′|x=1=a.
則曲線y=xa+2(a∈R)在點(1,3)處的切線方程為:y-3=a(x-1),
∵切線經(jīng)過坐標(biāo)原點,
∴0-3=a(0-1),解得:a=3.
故答案為:3.
點評:本題考查了利用導(dǎo)數(shù)研究曲線上某點處的切線方程,訓(xùn)練了基本初等函數(shù)的導(dǎo)數(shù)公式,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點P(s,t)是L上的任一點,且點P與點A和點B均不重合.
(1)若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+
5125
=0與D有公共點,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京八中大興分校高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點P(s,t)是L上的任一點,且點P與點A和點B均不重合.
(1)若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+=0與D有公共點,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2010年新課標(biāo)高考數(shù)學(xué)(理科)試卷分類精編16:拋物線(解析版) 題型:解答題

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點P(s,t)是L上的任一點,且點P與點A和點B均不重合.
(1)若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+=0與D有公共點,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB.記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D.設(shè)點P(s,t)是L上的任一點,且點P與點A和點B均不重合.
(1)若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+=0與D有公共點,試求a的最小值.

查看答案和解析>>

同步練習(xí)冊答案