如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;
(3)求三棱錐F-CBE的體積.

【答案】分析:1)利用線面垂直的性質(zhì)定理可得CB⊥AF.再利用圓的直徑所對(duì)圓周角是直角的性質(zhì)可得AF⊥BF,再利用線面垂直的判定定理即可證明;
(2)取線段CD的中點(diǎn)N,連接MN,ON.利用三角形的中位線定理和平行四邊形的性質(zhì)定理可得:MN∥DF,OA∥DA,利用面面平行的判定定理可得:平面OMN∥平面DAF,利用其性質(zhì)定理即可得出線面平行;
(3)由(1)可得:BC⊥平面ABEF,即BC為三棱錐C-BEF的高,由已知可得△OEF是邊長(zhǎng)為1的等邊三角形即可得出其面積,利用三棱錐的體積計(jì)算公式即可得出.
解答:(1)證明:∵矩形ABCD⊥平面ABEF,矩形ABCD∩平面ABEF,BC⊥AB,
∴CB⊥平面ABEF,∴CB⊥AF.
由AB為圓O的直徑,∴∠AFB=90°,∴AF⊥BF.
又BC∩BF=B,∴AF⊥平面CBF.
(2)證明:取線段CD的中點(diǎn)N,連接MN,ON.又M為CF的中點(diǎn),∴MN∥DF,
∵DNOA,∴四邊形OADN為平行四邊形,∴OA∥DA.
∵ON∩MN=N,∴平面OMN∥平面DAF,
∴OM∥平面DAF.
(3)連接OE,OF,則OE=OF=EF=1,∴△OEF為等邊三角形,∴,
∴VF-CBE=VC-BEF==
點(diǎn)評(píng):本題綜合考查了線面、面面垂直的判定與性質(zhì)定理、線面與面面平行的判定與性質(zhì)定理、三角形的中位線定理、平行四邊形的性質(zhì)、等邊三角形的性質(zhì)、三棱錐的體積、圓的性質(zhì)等基礎(chǔ)知識(shí)與基本技能,考查了空間想象能力、推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三12月質(zhì)量檢測(cè)數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分12分)如圖,AB為圓O的直

徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD

所在的平面和圓O所在的平面垂直,且.

⑴求證:

⑵設(shè)FC的中點(diǎn)為M,求證:

⑶設(shè)平面CBF將幾何體分成的兩個(gè)錐體的體積分別為,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年遼寧省錦州市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實(shí)數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點(diǎn),CD過(guò)點(diǎn)E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案