對函數(shù)f(x)=xsinx,現(xiàn)有下列命題:
①函數(shù)f(x)是偶函數(shù);
②函數(shù)f(x)的最小正周期是2π;
③點(diǎn)(π,0)是函數(shù)f(x)的圖象的一個(gè)對稱中心;
④函數(shù)f(x)在區(qū)間 上單調(diào)遞增,在區(qū)間 上單調(diào)遞減.其中是真命題的是
[     ]
A. ①④
B. ②④
C. ②③
D. ①③
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2ωx+2
3
cosωxsinωx-sin2ωx(ω>0,x∈R)
圖象的兩相鄰對稱軸間的距離為
π
2

(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,若a=
3
,f(A)=1,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意平面向量
AB
=(x,y),我們把
AB
繞其起點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),稱為
AB
逆旋θ角到
AP

(1)把向量
a
=(2,-1)逆旋
π
3
角到
b
,試求向量
b

(2)設(shè)平面內(nèi)函數(shù)y=f (x)圖象上的每一點(diǎn)M,把
OM
逆旋
π
4
角到
ON
后(O為坐標(biāo)原點(diǎn)),得到的N點(diǎn)的軌跡是曲線x2-y2=3,當(dāng)函數(shù)F (x)=λ f (x)-|x-1|+2有三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省新安江中學(xué)2012屆高三10月月考數(shù)學(xué)理科試題 題型:044

已知函數(shù)f(x)=cos2ωx+2cosωxsinωx-sin2ωx(ω>0,x∈R)圖象的兩相鄰對稱軸間的距離為

(1)求ω的值;

(2)在△ABC中,a,b,c分別是角A,B,C的對邊,若a=,f(A)=1,求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知對任意平面向量數(shù)學(xué)公式=(x,y),我們把數(shù)學(xué)公式繞其起點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)θ角得到向量數(shù)學(xué)公式=(xcosθ-ysinθ,xsinθ+ycosθ),稱為數(shù)學(xué)公式逆旋θ角到數(shù)學(xué)公式
(1)把向量數(shù)學(xué)公式=(2,-1)逆旋數(shù)學(xué)公式角到數(shù)學(xué)公式,試求向量數(shù)學(xué)公式
(2)設(shè)平面內(nèi)函數(shù)y=f (x)圖象上的每一點(diǎn)M,把數(shù)學(xué)公式逆旋數(shù)學(xué)公式角到數(shù)學(xué)公式后(O為坐標(biāo)原點(diǎn)),得到的N點(diǎn)的軌跡是曲線x2-y2=3,當(dāng)函數(shù)F (x)=λ f (x)-|x-1|+2有三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案