【題目】已知數(shù)列{an}前n項和為Sn , 首項為a1 , 且 ,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(log2a3n+1)×(log2a3n+4),求證: + + +…+ < .
【答案】
(1)解:∵ ,an,Sn成等差數(shù)列,∴2an= ,
當(dāng)n=1時,2a1= ,解得a1= .
當(dāng)n≥2時,2an﹣2an﹣1= ﹣ =an,化為:an=2a.
∴數(shù)列{an}是等比數(shù)列,首項為 ,公比為2.∴an= =2n﹣2
(2)證明:bn=(log2a3n+1)×(log2a3n+4)= log2(3n+2)=(3n﹣1)(3n﹣2),
∴ = = .
∴ + + +…+ = +…+ = < .
【解析】(1)由 ,an , Sn成等差數(shù)列,可得2an= ,當(dāng)n=1時,2a1= ,解得a1 . 當(dāng)n≥2時,2an﹣2an﹣1=an , 化為:an=2a.利用等比數(shù)列的通項公式即可得出.(2)bnspan>= log2(3n+2)=(3n﹣1)(3n﹣2),可得 = = .利用“裂項求和”方法、數(shù)列的單調(diào)性即可證明.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b.
(1)求角C的值;
(2)若a+b=4,當(dāng)c取最小值時,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,1]上的最大值與最小值的差是1,則實數(shù)a的值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( + )x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)M>0,使得|f(x)|≤M|x|對一切的實數(shù)x都成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù): ①f(x)=2x,
②f(x)=x2+1,
③f(x)=sinx+cosx,
④f(x)= ,
⑤f(x)是定義在實數(shù)集上的奇函數(shù),且對一切的x1 , x2均有|f(x1)﹣f(x2)|≤2|x1﹣x2|.
其中是“倍約束函數(shù)”的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+2mx+2m+1=0(m∈R).
(1)若方程有兩實根,其中一根在區(qū)間(﹣1,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m的取值范圍;
(2)若方程兩實根均在區(qū)間(﹣1,2)內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)(x>0)的導(dǎo)函數(shù)為f′(x),若xf′(x)+f(x)=ex , 且f(1)=e,則( )
A.f(x)的最小值為e??
B.f(x)的最大值為e
C.f(x)的最小值為 ??
D.f(x)的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1 , F2在坐標(biāo)軸上,離心率為 ,且過點(diǎn)(4,﹣ ),點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:MF1⊥MF2;
(3)求△F1MF2的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com