|
9b |
a3+4ab2 |
9b |
a3+4ab2 |
|
a2+
| ||||
2 |
9b |
a3+4ab2 |
a2+
| ||||
2 |
9b |
a3+4ab2 |
9b |
a3+4ab2 |
a2+
| ||||
2 |
9b |
a3+4ab2 |
9b |
a3+4ab2 |
9b |
a3+4ab2 |
9b |
a3+4ab2 |
a+b+|a-b| |
2 |
a+b-|a-b| |
2 |
科目:高中數學 來源: 題型:
1 | 1 | -0.8 |
0.1 | -0.3 | -1 |
1 | 1 | c |
a | b | -1 |
查看答案和解析>>
科目:高中數學 來源: 題型:
π |
3 |
π |
3 |
3 |
1 |
8 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2012年全國普通高等學校招生統一考試理科數學(北京卷解析版) 題型:解答題
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得.又因為,所以,
于是,,
所以,當,且時,取得最大值1。
(3)對于給定的正整數t,任給數表如下,
… |
|||
… |
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且,因此,不妨設,
且。
由得定義知,,
又因為
所以
所以,
對數表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
則且,
綜上,對于所有的,的最大值為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com