已知雙曲線的離心率,過的直線到原點(diǎn)的距離是 
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的點(diǎn)C,D且C,D都在以B為圓心的圓上,求k的值.
(1)(2)

試題分析:(1)原點(diǎn)到直線AB:的距離.
故所求雙曲線方程為
(2)把中消去y,整理得 .
設(shè)的中點(diǎn)是,則

,故所求k=±
點(diǎn)評(píng):直線與雙曲線的位置關(guān)系常聯(lián)立方程利用韋達(dá)定理
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)
設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某海域有、兩個(gè)島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過魚群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。

(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在、兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),、兩島收到魚群在處反射信號(hào)的時(shí)間比為,問你能否確定處的位置(即點(diǎn)的坐標(biāo))?(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一動(dòng)圓圓心在拋物線上,且動(dòng)圓恒與直線相切,則動(dòng)圓必過定點(diǎn)
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點(diǎn)在軸的異側(cè),端點(diǎn)、的橫坐標(biāo)分別相等,縱坐標(biāo)分別同號(hào).

(Ⅰ)若弦所在直線斜率為,且弦的中點(diǎn)的橫坐標(biāo)為,求直線的方程;
(Ⅱ)若弦過定點(diǎn),試探究弦是否也必過某個(gè)定點(diǎn). 若有,請(qǐng)證明;若沒有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線上一點(diǎn)到焦點(diǎn)的距離為1,則點(diǎn)的縱坐標(biāo)是  (    )
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左、右兩焦點(diǎn)分別為,點(diǎn)在橢圓上,
,,則橢圓的離心率等于  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離為5,求拋物線的方程和m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,F(xiàn)1,F2分別是橢圓 (a>0,b>0)的兩個(gè)焦點(diǎn),A和B是以O(shè)為圓心,以|OF1|為半徑的圓與該左半橢圓的兩個(gè)交點(diǎn),且△F2AB是等邊三角形,則橢圓的離心率為(    )
A.B.C.D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案