(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點(diǎn).
(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。
(1)連結(jié)AC交BD于O,連接EO因?yàn)槠叫兴倪呅蜛BCD,
由OE為△AC1C中位線,得出OE∥AC1;從而AC1∥面BDE。
(2)先證BD⊥面A1AC C1
證得BD⊥A1E,A1E與BD所成角為900。
【解析】
試題分析:(1)連結(jié)AC交BD于O,連接EO因?yàn)槠叫兴倪呅蜛BCD,
所以O(shè)為BD中點(diǎn),E為CC1中點(diǎn)
所以O(shè)E為△AC1C中位線,
所以O(shè)E∥AC1-----------3
OE面BDE
AC1面BDE
AC1∥面BDE------------6
(2)因正四棱柱ABCD-A1B1C1D1
所以BD⊥A1A,又因BD⊥AC
A1A∩AC="A" ,A1A 面A1AC C1
|
AC面A1AC C1
所以BD⊥面A1AC C1 --------9
A1E面A1AC C1
所以BD⊥A1E-
A1E與BD所成角為900------12
考點(diǎn):本題主要考查立體幾何的線面垂直,異面直線所成角的計(jì)算,幾何體的特征。
點(diǎn)評:本題通過考查直線與平面的垂直關(guān)系及異面直線所成角的計(jì)算,考查空間想像能力、推理論證能力、運(yùn)算求解能力、考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想等.本題中異面直線所成角的確定,通過證明線面垂直完成,值得深思。屬中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
在△ABC中,角A、B、C的對邊分別為a、b、c,且.
??????(Ⅰ)求角A的大小;??????(Ⅱ)若,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
在平面直角坐標(biāo)系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若實(shí)數(shù)λ使向量,λ,滿足λ2·()2=·。
(1)求點(diǎn)P的軌跡方程,并判斷P點(diǎn)的軌跡是怎樣的曲線;
(2)當(dāng)λ=時,過點(diǎn)A1且斜率為1的直線與此時(1)中的曲線相交的另一點(diǎn)為B,能否在直線x=-9上找一點(diǎn)C,使ΔA1BC為正三角形(請說明理由)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(二)文數(shù)學(xué)卷(解析版) 題型:解答題
(本題滿分12分)在中分別為A,B,C所對的邊,且
(1)判斷的形狀;
(2)若,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆云南大理州賓川四中高二下學(xué)期4月考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)在各項(xiàng)為正的數(shù)列中,數(shù)列的前n項(xiàng)和滿足
(1)求;(2) 由(1)猜想數(shù)列的通項(xiàng)公式;(3) 求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆云南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分12分)在邊長為2的正方體中,E是BC的中點(diǎn),F(xiàn)是的中點(diǎn)
(Ⅰ)求證:CF∥平面
(Ⅱ)求二面角的平面角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com