分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論k的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)利用參數(shù)分離法先求出k的取值范圍,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而判斷函數(shù)的零點(diǎn)個(gè)數(shù).
解答 解:(1)f(x)的定義域是(0,+∞),
故f′(x)=x-$\frac{k}{x}$=$\frac{{x}^{2}-k}{x}$,
k≤0時(shí),f′(x)>0,f(x)遞增,
k>1時(shí),令f′(x)>0,解得:x>lnk,令f′(x)<0,解得:0<x<lnk,
故f(x)在(0,lnk)遞減,在(lnk,+∞)遞增,
0<k≤1時(shí),lnk≤0,f(x)在(0,+∞)遞增,
綜上,k≤1時(shí),f(x)在(0,+∞)遞增,
k>1時(shí),f(x)在(0,lnk)遞減,在(lnk,+∞)遞增;
(2)由f(x)=$\frac{{x}^{2}}{2}$-klnx=0得k=$\frac{{x}^{2}}{2lnx}$,函數(shù)的定義域?yàn)椋?,+∞),
設(shè)h(x)=$\frac{{x}^{2}}{2lnx}$,則h′(x)=$\frac{x(2lnx-1)}{{2(lnx)}^{2}}$,
由h′(x)=0得x=$\sqrt{e}$,
則當(dāng)x>$\sqrt{e}$時(shí),h′(x)>0,函數(shù)單調(diào)遞增,
當(dāng)0<x<1或1<x<$\sqrt{e}$時(shí),h′(x)<0,函數(shù)單調(diào)遞減,
∴當(dāng)x=$\sqrt{e}$時(shí),函數(shù)取得極小值h($\sqrt{e}$)=$\frac{{(\sqrt{e})}^{2}}{2ln\sqrt{e}}$=e,
∵f(x)存在零點(diǎn),∴k>e,
f′(x)=x-$\frac{k}{x}$,則是f′(x)=x-$\frac{k}{x}$,在(1,$\sqrt{e}$]上為增函數(shù),
則f′(x)<f′($\sqrt{e}$)=$\sqrt{e}$-$\frac{k}{\sqrt{e}}$<$\sqrt{e}$-$\frac{e}{\sqrt{e}}$=0,
即函數(shù)f(x)在(1,$\sqrt{e}$]上為減函數(shù),
f(1)=$\frac{1}{2}$>0,f($\sqrt{e}$)=$\frac{e}{2}$-kln$\sqrt{e}$=$\frac{e}{2}$-$\frac{k}{2}$=$\frac{e-k}{2}$<0,
即函數(shù)f(x)在區(qū)間(1,$\sqrt{e}$]上只有1個(gè)零點(diǎn).
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷,根據(jù)函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,利用參數(shù)分離法結(jié)合構(gòu)造法是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 909 | B. | 910 | C. | 911 | D. | 912 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $?x∈R,{x^2}-x+\frac{1}{4}≥0$ | B. | ?x0∈R,sinx0≥1 | ||
C. | ?x0∈R,sinx0+cosx0=2 | D. | $?x∈(0,\frac{π}{2}),x>sinx$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com