設(shè)向量a=(
1
2
,sina)的模為
2
2
,則cos2a=
1
2
1
2
分析:由題意,利用向量的模的計(jì)算公式列出關(guān)系式,得到sin2α的值,然后把所求的式子利用二倍角的余弦函數(shù)公式化簡,將sin2α的值代入即可求出值.
解答:解:∵
a
=(
1
2
,sina)的模為
2
2

∴|
a
|=
(
1
2
)
2
+sin2α
=
2
2
,
∴sin2α=
1
4
,
則cos2a=1-2sin2α=1-2×
1
4
=
1
2

故答案為:
1
2
點(diǎn)評(píng):此題考查了平面向量的模,以及二倍角的余弦函數(shù)公式,熟練掌握二倍角的余弦函數(shù)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn),P為橢圓上一點(diǎn),O為原點(diǎn),記△OFP的面積為S,且
OF
FP
=1

(1)設(shè)
1
2
<S<
3
2
,求向量
OF
FP
夾角的取值范圍.
(2)設(shè)|
OF
|=c
,S=
3
4
c
,當(dāng)c≥2時(shí),求當(dāng)|
OP
|
取最小值時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中的三個(gè)內(nèi)角分別為A、B、C.
(1)設(shè)
BC
CA
=
CA
AB
,∠A=
12
,求△ABC中∠B的大;
(2)設(shè)向量
s
=(2sinC,  -
3
)
,
t
=(cos2C,  2cos2
C
2
-1)
,且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•成都三模)已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-
2
,0)、(
2
,0),點(diǎn)A、N滿足
AE
=2
3
,
ON
=
1
2
(
OA
+
OF
)
,過點(diǎn)N且垂直于AF的直線交線段AE于點(diǎn)M,設(shè)點(diǎn)M的軌跡為C.
(1)求軌跡C的方程;
(2)若軌跡C上存在兩點(diǎn)P和Q關(guān)于直線l:y=k(x+1)(k≠0)對(duì)稱,求k的取值范圍;
(3)在(2)的條件下,設(shè)直線l與軌跡C交于不同的兩點(diǎn)R、S,對(duì)點(diǎn)B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知銳角△ABC中的三個(gè)內(nèi)角分別為A、B、C.
(1)設(shè)
BC
CA
=
CA
AB
,∠A=
12
,求△ABC中∠B的大;
(2)設(shè)向量
s
=(2sinC,  -
3
)
,
t
=(cos2C,  2cos2
C
2
-1)
,且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn),P為橢圓上一點(diǎn),O為原點(diǎn),記△OFP的面積為S,且
OF
FP
=1

(1)設(shè)
1
2
<S<
3
2
,求向量
OF
FP
夾角的取值范圍.
(2)設(shè)|
OF
|=c
,S=
3
4
c
,當(dāng)c≥2時(shí),求當(dāng)|
OP
|
取最小值時(shí)的橢圓方程.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案