(本小題滿分13分)如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,A點在PD上的射影為G點,E點在AB上,平面PEC⊥平面PDC.

(Ⅰ)求證:AG∥平面PEC;

(Ⅱ)求AE的長;

(Ⅲ)求二面角E—PC—A的正弦值.


解(Ⅰ)證明:∵CD⊥AD,CD⊥PA    

∴CD⊥平面PAD   ∴CD⊥AG,

又PD⊥AG     

∴AG⊥平面PCD           …………2分

作EF⊥PC于F,因面PEC⊥面PCD 

∴EF⊥平面PCD  ∴EF∥AG

又AG 面PEC,EF 面PEC,

∴AG∥平面PEC     ………………4分

 


(Ⅱ)由(Ⅰ)知A、E、F、G四點共面,又AE∥CD  ∴ AE∥平面PCD

∴AE∥GF     ∴四邊形AEFG為平行四邊形,∴AE=GF       …………5分

∵PA=3,AB=4    ∴PD=5,AG=

又PA2=PG•PD     ∴PG                       ……………………6分

      ∴   ∴    ………………8分

(Ⅲ)過E作EO⊥AC于O點,易知EO⊥平面PAC,

又EF⊥PC,∴OF⊥PC∴∠EFO即為二面角E—PC—A的平面角  ……10分

,   又EF=AG

∴                ………………13分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案