A. | -1 | B. | -$\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -2 |
分析 由約束條件作出可行域,由$\frac{y}{x}$的最大值為4求出m值,則$\frac{y}{x}$的最小值可求.
解答 解:由約束條件$\left\{\begin{array}{l}x-2y-4≤0\\ 2x+y-8≤0\\ x≥m\end{array}$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x=m}\\{2x+y-8=0}\end{array}\right.$,解得C(m,8-2m),
聯(lián)立$\left\{\begin{array}{l}{x=m}\\{x-2y-4=0}\end{array}\right.$,解得A(m,$\frac{m-4}{2}$),
由圖可知,$\frac{y}{x}$的最大值等于$\frac{8-2m}{m}=4$,則m=$\frac{4}{3}$,
∴A($\frac{4}{3},-\frac{4}{3}$),
∴$\frac{y}{x}$的最小值為-1.
故選:A.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\frac{1}{{x}^{2}}$ | B. | y=$\frac{1}{x}$ | C. | y=x2 | D. | y=x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -7或3 | B. | -3或7 | C. | -7 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com