把長為a的鐵絲折成矩形,設矩形的一邊長為x,面積為S,求矩形面積S與一邊長x的函數(shù)關系式,并求出S的最大值.

答案:
解析:

  解:設矩形一邊長為x,則另一邊長為(a-2x),

  ∴S=x·(a-2x)=-x2ax〔x∈(0,)〕.

  ∵S=-x2ax=-(x-)2,

  ∴x=∈(0,)時,Smax

  ∴S的最大值為

  思路分析:本題的兩個變量x和S的函數(shù)關系容易建立,但要注意對定義域的隱含限制.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將長為a的鐵絲折成矩形,將矩形面積y表示為矩形一邊長x的函數(shù),求此函數(shù)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源:必修一教案數(shù)學蘇教版 蘇教版 題型:044

把長為a的鐵絲折成矩形,設矩形的一邊長為x,面積為s,求矩形面積s與一邊長x的函數(shù)關系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將長為a的鐵絲折成矩形,求此矩形面積y關于一邊長x的函數(shù)關系式,并求定義域和值域,作出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將長為a的鐵絲折成矩形,求矩形面積y關于一邊長x的函數(shù)關系式,并求定義域和值域,作出函數(shù)的圖像.

查看答案和解析>>

同步練習冊答案