下列不等式正確的是(  )
A、若a>b,則a•c>b•c
B、若a•c2>b•c2,則a>b
C、若a>b,則
1
a
1
b
D、若a>b,則a•c2>b•c2
考點(diǎn):不等式比較大小
專題:不等式的解法及應(yīng)用
分析:A.當(dāng)c≤0時(shí),ac≤bc;
B.利用不等式的基本性質(zhì)即可判斷出;
C.取a=2,b=-1,不成立;
D.c=0時(shí)不成立.
解答: 解:A.當(dāng)c≤0時(shí),ac≤bc,因此不正確;
B.∵a•c2>b•c2,∴a>b,正確;
C.取a=2,b=-1,則不成立;
D.c=0時(shí)不成立.
綜上可得:只有B正確.
故選;B.
點(diǎn)評:本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(n,1),
b
=(4,n),則n=2是
a
b
的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分又不要必

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-
m
x+1=0},若A∩R=∅,則實(shí)數(shù)m的取值范圍為( 。
A、m<4B、m>4
C、0<m<4D、0≤m<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)在(0,+∞)上為增函數(shù),且函數(shù)f(x)為偶函數(shù),則下列結(jié)論成立的是 ( 。
A、f(0)>f(1)
B、f(0)>f(2)
C、f(-1)>f(2)
D、f(-3)>f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(ωx+φ)(ω>0,|φ|<
π
2
)的圖象的一部分如圖所示,則( 。
A、ω=2,φ=
π
6
B、ω=2,φ=-
π
6
C、ω=2,φ=
π
3
D、ω=2,φ=-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
sinπx(x<
1
2
)
f(x-1)+1(x≥
1
2
)
,求f(
1
4
)+f(
7
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=msin
π
4
x+mcos
π
4
x(m>0),若直線y=2是函數(shù)f(x)圖象的一條切線.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)圖象上的兩點(diǎn)M、N的橫坐標(biāo)依次為2和4,O為坐標(biāo)原點(diǎn),求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=axlnx(a∈R)在x=e處的切線斜率為2.
(1)求f(x)的最小值;
(2)設(shè)A(x1,f(x1))與B(x2,f(x2))(x1<x2)是函數(shù)y=f(x)圖象上的兩點(diǎn),直線AB的斜率為k,函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若存在x0>0,使f′(x0)=k.求證:x2>x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-a|+3x,(a∈R).
(1)求不等式f(x)>3x+1的解集;
(2)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.

查看答案和解析>>

同步練習(xí)冊答案