某高校在2013年考試成績中100名學(xué)生的筆試成績的頻率分布直方圖如圖所示,

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,
① 已知學(xué)生甲和學(xué)生乙的成績均在第三組,求學(xué)生甲和學(xué)生乙不同時進(jìn)入第二輪面試的概率;
② 若第三組被抽中的學(xué)生實力相當(dāng),在第二輪面試中獲得優(yōu)秀的概率均為,設(shè)第三組中被抽中的學(xué)生有名獲得優(yōu)秀,求的分布列和數(shù)學(xué)期望。

(1)0.3,0.2,0.1
(2)的分布列如下:


0
1
2
3





的數(shù)學(xué)期望

解析試題分析:解:(1)第三組的頻率為;第四組的頻率為;
第五組的頻率為                                    3分
(2)①設(shè)學(xué)生甲和學(xué)生乙同時進(jìn)入第二輪面試為事件M:則
所以學(xué)生甲和學(xué)生乙不同時進(jìn)入第二輪面試的概率   7分
②由已知得,且,
的分布列如下:


0
1
2
3





的數(shù)學(xué)期望                                     13分
考點:概率分布列
點評:主要是考查了古典概型概率公式的運用,以及分布列的求解和期望公式,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在進(jìn)行一項擲骰子放球的游戲中規(guī)定:若擲出1點或2點,則在甲盒中放一球;否則,在乙盒中放一球,F(xiàn)在前后一共擲了4次骰子,設(shè)、分別表示甲、乙盒子中球的個數(shù)。
(Ⅰ)求的概率;
(Ⅱ)若求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲乙兩班進(jìn)行消防安全知識競賽,每班出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為,乙隊每人答對的概率都是.設(shè)每人回答正確與否相互之間沒有影響,用表示甲隊總得分.
(I)求隨機(jī)變量的分布列及其數(shù)學(xué)期望E();
(Ⅱ)求在甲隊和乙隊得分之和為4的條件下,甲隊比乙隊得分高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在1,2,3,…,9這9個自然數(shù)中,任取3個數(shù),
(1)記Y表示“任取的3個數(shù)中偶數(shù)的個數(shù)”,求隨機(jī)變量Y的分布列及其期望;
(2)記X為3個數(shù)中兩數(shù)相鄰的組數(shù),例如取出的數(shù)為1,2,3,則有這兩組相鄰的數(shù)1,2和2,3,此時X的值為2,求隨機(jī)變量X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在進(jìn)行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;
若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3
次,設(shè)分別表示甲,乙,丙3個盒中的球數(shù).
(1)求依次成公差大于0的等差數(shù)列的概率;
(2)記,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某射手擊中目標(biāo)的概率為0.8,每次射擊的結(jié)果相互獨立,現(xiàn)射擊10次,問他最有可能射中幾次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

)袋中裝有大小相同的黑球、白球和紅球共10個。已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(1)求袋中各色球的個數(shù);
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人獨立參加某企業(yè)的招聘考試,根據(jù)三人的專業(yè)知識、應(yīng)試表現(xiàn)、工作經(jīng)驗等綜合因素,三人被招聘的概率依次為表示被招聘的人數(shù)。
(1)求三人中至少有一人被招聘的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了保養(yǎng)汽車,維護(hù)汽車性能,汽車保養(yǎng)一般都在購車的4S店進(jìn)行,某地大眾汽車4S店售后服務(wù)部設(shè)有一個服務(wù)窗口專門接待保養(yǎng)預(yù)約。假設(shè)車主預(yù)約保養(yǎng)登記所需的時間互相獨立,且都是整數(shù)分鐘,對以往車主預(yù)約登記所需的時間統(tǒng)計結(jié)果如下:

登記所需時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第—個車主開始預(yù)約登記時計時(用頻率估計概率),
(l)估計第三個車主恰好等待4分鐘開始登記的概率:
(2)X表示至第2分鐘末已登記完的車主人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案