解:(1)設x
1<x
2由y=f
1(x)是區(qū)間D上的增函數(shù)可得f
1(x
1)<f
1(x
2)
①若f
2(x)為單調遞增或常函數(shù),則y=F(x)是區(qū)間D上的增函數(shù)
②若函數(shù)f
2(x
1)>f
2(x
2),則由|f
1(x
1)-f
1(x
2)|>|f
2(x
1)-f
2(x
2)|可得,-f
1(x
1)+f
1(x
2)|>f
2(x
1)-f
2(x
2)
∴f
1(x
1)+f
2(x
1)<f
1(x
2)+f
2(x
2)即F(x
1)<F(x
2)
綜上可得函數(shù)F(X)為單調遞增的函數(shù)
(2)例如函數(shù)f
1(x)=-3
x,f
2(x)=2
x,則F(x)=2
x-3
x不是單調遞增函數(shù)
(3)
∵x>0由f′(x)≥0可得x
,f′(x)<0可得
函數(shù)f(x)的單調增區(qū)間是[
),單調減區(qū)間是(0,
)
分析:(1)設x
1<x
2由y=f
1(x)是區(qū)間D上的增函數(shù)可得f
1(x
1)<f
1(x
2),①若f
2(x)為單調遞增或常函數(shù),則y=F(x)是區(qū)間D上的增函數(shù);②若函數(shù)f
2(x
1)>f
2(x
2),則由|f
1(x
1)-f
1(x
2)|>|f
2(x
1)-f
2(x
2)|可得,-f
1(x
1)+f
1(x
2)|>f
2(x
1)-f
2(x
2),從而可判斷
(2)例如函數(shù)f
1(x)=-3
x,f
2(x)=2
x,則F(x)=2
x-3
x不是單調遞增函數(shù)
(3)對函數(shù)求導可得
結合x>0,分別求f′(x)≥0,f′(x)<0的x的范圍,從而可求函數(shù)的單調區(qū)間
點評:本題主要考查了利用函數(shù)的單調性的定義判斷函數(shù)的單調性及利用導數(shù)求解函數(shù)的單調區(qū)間,解題的關鍵是要靈活利用函數(shù)單調性的知識.