設(shè)向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b.若|a|=1,則|a|2+|b|2+|c|2的值是________.

4
∵a+b+c=0,∴c=-(a+b).
∵(a-b)⊥c,∴(a-b)·[-(a+b)]=0.
即|a|2-|b|2=0,∴|a|=|b|=1,
∵a⊥b,∴a·b=0,
∴|c|2=(a+b)2=|a|2+2a·b+b2=1+0+1=2.
∴|a|2+|b|2+|c|2=4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
,
b,
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
b,若|
a
|=1
,則|
a
|2+|
b
|2+|
c
|2
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
b
、
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,|
a
|=1,則|
c
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
,
b
,
c
滿足|
a
|=|
b
|=1,
a
b
=
1
2
,( 
a
-
c
)•( 
b
-
c
)=0,則|
c
|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011年高考全國(guó)卷理科)設(shè)向量
a
、
b
c
滿足|
a
|=|
b
|=1,
a
b
=-
1
2
,
a
-
c
b
-
c
=600,則|
c
|
的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
,
b
,
c
滿足|
a
|=|
b
|=1,
a
b
=-
1
2
,<
a
-
c
b
-
c
>=60°
,則|
c
|的最大值等于
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案