分析 由已知利用正弦定理可求sinB的值,結(jié)合B的范圍,利用特殊角的三角函數(shù)值可求B,進(jìn)而利用三角形內(nèi)角和定理可求C的值.
解答 解:△ABC中,∵a=2,b=$\sqrt{6}$,∠A=45°,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0,180°),
∴B=60°,或120°,
∴C=180°-A-B=15°或75°.
故答案為:15°或75°.
點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值,三角形內(nèi)角和定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 194(8) | B. | 233(8) | C. | 471(8) | D. | 174(8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | -$\frac{8}{3}$ | C. | -6 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | 6 | C. | 2$\sqrt{6}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{15}{2}$ | B. | $\frac{15}{2}$ | C. | -$\frac{35}{8}$ | D. | $\frac{35}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com