5.已知△ABC中,角A,B,C所對的邊分別為a,b,c,且a=2,b=$\sqrt{6}$,∠A=45°,則∠C=15°或75°.

分析 由已知利用正弦定理可求sinB的值,結(jié)合B的范圍,利用特殊角的三角函數(shù)值可求B,進(jìn)而利用三角形內(nèi)角和定理可求C的值.

解答 解:△ABC中,∵a=2,b=$\sqrt{6}$,∠A=45°,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0,180°),
∴B=60°,或120°,
∴C=180°-A-B=15°或75°.
故答案為:15°或75°.

點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值,三角形內(nèi)角和定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.十進(jìn)制數(shù)124轉(zhuǎn)化為八進(jìn)制數(shù)是(  )
A.194(8)B.233(8)C.471(8)D.174(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知復(fù)數(shù)z=log3(x2-3x)+ilog2(x-4),當(dāng)x為何值時,
(1)z∈R;
(2)z為虛數(shù);
(3)z所對應(yīng)的復(fù)平面上的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.向量$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(-4,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=( 。
A.$\frac{8}{3}$B.-$\frac{8}{3}$C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2x+$\frac{3}{x}$(x>0)的最小值是( 。
A.$\sqrt{6}$B.6C.2$\sqrt{6}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(文科答)已知數(shù)列{an}及等差數(shù)列{bn},若a1=3,an=$\frac{1}{2}$an-1+1(n≥2),a1=b2,2a3+a2=b4,
(1)證明數(shù)列{an-2}為等比數(shù)列;
(2)求數(shù)列{bn}的通項公式;
(3)設(shè)數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)正方形ABCD的邊長為1,則|$\overrightarrow{AB}$-$\overrightarrow{BC}$+$\overrightarrow{AC}$|等于( 。
A.0B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ex-ax+1,其中a為實常數(shù),e=2.71828…為自然對數(shù)的底數(shù).
(1)當(dāng)a=e時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有最小值,并設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤2;
(3)設(shè)n∈N*,試比較$\frac{n(n+1)}{2}$與ln(e-1)+ln(2e-1)+ln(3e-1)…+ln(ne-1)的大小并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.二項式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展開式中$\sqrt{x}$的系數(shù)是( 。
A.-$\frac{15}{2}$B.$\frac{15}{2}$C.-$\frac{35}{8}$D.$\frac{35}{8}$

查看答案和解析>>

同步練習(xí)冊答案