4、函數(shù)y=f(x)與y=f′(x)的圖象不可能是(  )
分析:根據(jù)函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系--導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減,對(duì)ABCD逐一分析可確定答案.
解答:解:A中函數(shù)f(x)先增后減,故f'(x)先正后負(fù),滿足條件;
B中f(x)是單調(diào)增函數(shù),故f'(x)應(yīng)該恒大于0,但圖象不滿足條件;
C中f(x)勻速遞減,故f'(x)應(yīng)該是小于0的一個(gè)常數(shù),滿足條件;
D中f(x)單調(diào)遞減,故f'(x)應(yīng)小于0,滿足條件.
故選B.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,導(dǎo)數(shù)是由高等數(shù)學(xué)下放到高中的新內(nèi)容,是高考的熱點(diǎn)問(wèn)題,每年必考,一定要加強(qiáng)復(fù)習(xí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、已知函數(shù)y=f(x)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log3|x|的圖象的交點(diǎn)的個(gè)數(shù)為是
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)y=f(x)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log3|x|的圖象的交點(diǎn)的個(gè)數(shù)為是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省雙鴨山一中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知函數(shù)y=f(x)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log3|x|的圖象的交點(diǎn)的個(gè)數(shù)為是   

查看答案和解析>>

同步練習(xí)冊(cè)答案