精英家教網 > 高中數學 > 題目詳情
給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即 {x}=m.在此基礎上有函數f(x)=|x-{x}
.
 
(x∈

(1)求f(4),f(-
1
2
),f(-8.3)
的值;
(2)對于函數f(x),現給出如下一些判斷:
①函數y=f(x)是偶函數;
②函數y=f(x)是周期函數;
③函數y=f(x)在區(qū)間(-
1
2
,
1
2
]
上單調遞增;
④函數y=f(x)的圖象關于直線x=k+
1
2
 &(k∈Z)
對稱;
請你將以上四個判斷中正確的結論全部選擇出來,并選擇其中一個加以證明;
(3)若-206<x≤207,試求方程f(x)=
9
23
的所有解的和.
分析:(1)把x=4,x=-
1
2
,x=-8.3分別代入f(x)=|x-{x}|可求
(2)正確結論有:①②④
①:當x∈(m-
1
2
,m+
1
2
),m∈Z 時,-x∈(-m-
1
2
,-m+
1
2
),可得{x}=m,{-x}=-m,,從而f(-x)=|-x-{-x}|=|-x+m|=|x-m|=|x-{x}|=f(x);當x=m+
1
2
,m∈Z 時,f(x)=f(-x)=
1
2

②:對任意x∈(m-
1
2
,m+
1
2
],x+1∈(m+1-
1
2
,m+1+
1
2
],可得{x+1}=m+1,從而f(x+1)=|x+1-{x+1}|=|x+1-m-1|=|x-m|=|x-{x}|=f(x),
④:函數y=f(x) 是偶函數,即f(-x)=f(x),又函數y=f(x) 是以1為周期的周期函數可得f(x+1)=f(x),則f(x+1)=f(-x)可得f(
1
2
+x)=f(
1
2
-x)?f(k+
1
2
+x)=f(k+
1
2
-x)
(3)由函數y=f(x)是偶函數,當206≤x≤207時,由判斷④知當x∈[206,207]時有兩解,且關于x=206+
1
2
對稱,可求和
解答:解:(1)f(4)=0,f(-
1
2
)=
1
2
,f(-8.3)=0.3.…6分
(2)正確結論有:①②④.…9分證
①:當x∈(m-
1
2
,m+
1
2
),m∈Z 時,-x∈(-m-
1
2
,-m+
1
2
),∴{x}=m,{-x}=-m,
∴f(-x)=|-x-{-x}|=|-x+m|=|x-m|=|x-{x}|=f(x);當x=m+
1
2
,m∈Z 時,f(x)=f(-x)=
1
2
,
故函數y=f(x) 是偶函數.…14分證
②:對任意x∈(m-
1
2
,m+
1
2
],x+1∈(m+1-
1
2
,m+1+
1
2
],∴{x+1}=m+1,
∴f(x+1)=|x+1-{x+1}|=|x+1-m-1|=|x-m|=|x-{x}|=f(x),
故函數y=f(x) 是以1為周期的周期函數.…14分證④:∵函數y=f(x) 是偶函數,即f(-x)=f(x),又函數y=f(x) 是以1為周期的周期函數,即f(x+1)=f(x),
∴f(x+1)=f(-x)?f(
1
2
+x)=f(
1
2
-x)?f(k+
1
2
+x)=f(k+
1
2
-x),故函數y=f(x) 的圖象關于直線x=k+
1
2
 &(k∈Z)
對稱.…14分
(3)∵函數y=f(x)是偶函數,即求當206≤x≤207時,由判斷④知當x∈[206,207]時有兩解,且關于x=206+
1
2
對稱,故其和為413.…20分
點評:本題主要考查了函數的性質:函數的奇偶性、函數的對稱性、函數的周期性的綜合應用,解題的關鍵是熟練掌握函數的性質并能靈活應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即{x}=m.在此基礎上給出下列關于函數f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
1
2
];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數y=f(x)的最小正周期為1;
④函數y=f(x)在(-
1
2
,
3
2
]上是增函數;
則其中真命題是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即{x}=m,在此基礎上給出下列關于函數f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
1
2
];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數y=f(x)在(-
1
2
3
2
]上是增函數;
④函數y=f(x)的最小正周期為1;
則其中真命題是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•門頭溝區(qū)一模)給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數),則m叫離實數x最近的整數,記作[x]=m,已知f(x)=|[x]-x|,下列四個命題:
①函數f(x)的定義域為R,值域為[0,
1
2
]
; ②函數f(x)是R上的增函數;
③函數f(x)是周期函數,最小正周期為1;  ④函數f(x)是偶函數,
其中正確的命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•昌平區(qū)二模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x}=m,在此基礎上給出下列關于函數f(x)=x-{x}的四個命題:
①函數y=f(x)的定義域為R,最大值是
1
2
;②函數y=f(x)在[0,1]上是增函數;
③函數y=f(x)是周期函數,最小正周期為1;④函數y=f(x)的圖象的對稱中心是(0,0).
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z),則m叫做離實數x最近的整數,記作{x},即{x}=m;在此基礎上有函數f(x)=|x-{x}|(x∈R).對于函數f(x)給出如下判斷:①函數f(x)是偶函數;②函數f(x)是周期函數;③函數f(x)在區(qū)間(-
1
2
,
1
2
]
上單調遞增;④函數f(x)的圖象關于直線x=k+
1
2
(k∈Z)對稱.則以上判斷中正確結論的個數是( 。

查看答案和解析>>

同步練習冊答案