設(shè){an}為遞增等差數(shù)列,Sn為其前n項(xiàng)和,滿(mǎn)足a1a3-a5=S10,S11=33.
(1)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)試求所有的正整數(shù)m,使數(shù)學(xué)公式為正整數(shù).

解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,依題意有
a1(a1+2d)-(a1+4d)=10a1+45d
11a1+55d=33
可以解得
a1=-7,d=2
∴an=2n-9,Sn=n2-8n
(2)==2m-5-
要使為整數(shù),只要為整數(shù)就可以了,
所以滿(mǎn)足題意的正整數(shù)m可以為2和3
分析:(1)代入公式,建立方程求出首項(xiàng)與公差,再由公式寫(xiě)出通項(xiàng)公式an及前n項(xiàng)和Sn;
(2)將展開(kāi)化簡(jiǎn)再根據(jù)其為正整數(shù)的條件得出有的正整數(shù)m.
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和,解題的關(guān)鍵是熟練掌握其通項(xiàng)公式及前n項(xiàng)和公式,本題中有一難點(diǎn),即為正整數(shù)這個(gè)條件的使用,要從本題的變形中歸納出這類(lèi)條件使用的方法來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an與1的等差中項(xiàng)等于Sn與1的等比中項(xiàng).
(1)求a1的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
2
1+an
 
+(-1)n-1×2n+1λ
,若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an與1的等差中項(xiàng)等于Sn與1的等比中項(xiàng).
(1)求a1的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
21+an 
+(-1)n-1×2n+1λ
,若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西桂林十八中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an與1的等差中項(xiàng)等于Sn與1的等比中項(xiàng).
(1)求a1的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),若數(shù)列{bn}是單調(diào)遞增數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案