(2001•江西)設(shè)0<θ<
π2
,曲線(xiàn)x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1有4個(gè)不同的交點(diǎn).
(Ⅰ)求θ的取值范圍;
(Ⅱ)證明這4個(gè)交點(diǎn)共圓,并求圓半徑的取值范圍.
分析:(I)聯(lián)立方程,組成方程組,有4個(gè)不同交點(diǎn)等價(jià)于x2>0,且y2>0,即可求θ的取值范圍;
(Ⅱ)確定圓的圓心在原點(diǎn),半徑為r=
2cosθ
(0<θ<
π
4
)
,從而可求圓半徑的取值范圍.
解答:(I)解:兩曲線(xiàn)的交點(diǎn)坐標(biāo)(x,y)滿(mǎn)足方程組
x2sinθ+y2cosθ=1
x2cosθ-y2sinθ=1
x2=sinθ+cosθ
y2=cosθ-sinθ.

有4個(gè)不同交點(diǎn)等價(jià)于x2>0,且y2>0,即
sinθ+cosθ>0
cosθ-sinθ>0.

又因?yàn)?span id="5fwzn4a" class="MathJye">0<θ<
π
2
,所以得θ的取值范圍為(0,
π
4
)

(II)證明:由(I)的推理知4個(gè)交點(diǎn)的坐標(biāo)(x,y)滿(mǎn)足方程x2+y2=2cosθ(0<θ<
π
4
)

即得4個(gè)交點(diǎn)共圓,該圓的圓心在原點(diǎn),半徑為r=
2cosθ
(0<θ<
π
4
)

因?yàn)閏osθ在(0,
π
4
)
上是減函數(shù),所以由cos0=1,cos
π
4
=
2
2
,
知r的取值范圍是(
42
,
2
)
點(diǎn)評(píng):本小題主要考查坐標(biāo)法、曲線(xiàn)的交點(diǎn)和三角函數(shù)性質(zhì)等基礎(chǔ)知識(shí),以及邏輯推理能力和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2001•江西)設(shè)A={x|x2-x=0},B={x|x2+x=0},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

()(2001高考江西、山西、天津)設(shè)坐標(biāo)原點(diǎn)為O,拋物線(xiàn)y2=2x與過(guò)焦點(diǎn)的直線(xiàn)交于A、B兩點(diǎn),則等于(    )A.  B.-  C.3   D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2001•江西)設(shè)A={x|x2-x=0},B={x|x2+x=0},則A∩B等于(  )
A.0B.{0}C.∅D.{-1,0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案