14.$\frac{1}{{2}^{2}-1}$+$\frac{1}{{3}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+…+$\frac{1}{(n+1)^{2}-1}$的值為( 。
A.$\frac{n+1}{2(n+2)}$B.$\frac{3}{4}$-$\frac{n+1}{2(n+2)}$C.$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)D.$\frac{3}{2}$-$\frac{1}{n+1}$+$\frac{1}{n+2}$

分析 由$\frac{1}{(n+1)^{2}-1}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),運(yùn)用裂項(xiàng)相消求和,化簡整理即可得到所求和.

解答 解:$\frac{1}{(n+1)^{2}-1}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
則$\frac{1}{{2}^{2}-1}$+$\frac{1}{{3}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+…+$\frac{1}{(n+1)^{2}-1}$
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$).
故選:C.

點(diǎn)評(píng) 本題考查數(shù)列求和的方法:裂項(xiàng)相消求和,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知向量$\overrightarrow{m}$=(1,-1),$\overrightarrow{n}$=(sinx,cosx),x∈(0,$\frac{π}{2}$).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求x的值;
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=$\frac{1}{3}a{x}^{3}+\frac{1}{2}b{x}_{2}+cx(a,b,c∈R,a≠0)$的圖象在點(diǎn)(x,f(x))處的切線的斜率為k(x),且函數(shù)g(x)=k(x)-$\frac{1}{2}x$為偶函數(shù).若函數(shù)k(x)滿足下列條件:①k(-1)=0;②對(duì)一切實(shí)數(shù)x,不等式k(x)$≤\frac{1}{2}{x}^{2}+\frac{1}{2}$恒成立.
(Ⅰ)求函數(shù)k(x)的表達(dá)式;
(Ⅱ)設(shè)函數(shù)h(x)=lnx${\;}^{2}-(2m+3)x+\frac{12f(x)}{x}(x>0)$的兩個(gè)極值點(diǎn)x1,x2(x1<x2)恰為φ(x)=lnx-sx2-tx的零點(diǎn).當(dāng)m$≥\frac{3\sqrt{2}}{2}$時(shí),求y=(x1-x2)φ′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若$|{\overrightarrow{AB}}|=18,|{\overrightarrow{AC}}|=5$,則$|{\overrightarrow{BC}}|$的取值范圍是[13,23].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對(duì)于實(shí)數(shù)a,b,c,d,規(guī)定一種運(yùn)算$|\begin{array}{l}{a}&\\{c}&oiq2m2g\end{array}|$=ad-bc,如$|\begin{array}{l}{1}&{0}\\{2}&{(-2)}\end{array}|$=1×(-2)-0×2=-2,那么當(dāng)$|\begin{array}{l}{(x+1)}&{(x+2)}\\{(x-3)}&{(x-1)}\end{array}|$=27時(shí),x=22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若?x0∈[1,2],使不等式${x_0}^2-m{x_0}+4>0$成立,則m的取值范圍是(-∞,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$y=\frac{-cosx}{ln|x|}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)已知5a=3,5b=4,求a,b.并用a,b表示log2512;
(2)若${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=5$,求$\frac{x}{{{x^2}+1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$=(2,0),$\overrightarrow$=(-1,3),則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的坐標(biāo)分別為( 。
A.(3,3),(3,-3)B.(3,3),(1,-3)C.(1,3),(3,3)D.(1,3),(3,-3)

查看答案和解析>>

同步練習(xí)冊(cè)答案