5.已知數(shù)列{an}滿足nan+2-(n+2)an=λ(n2+2n),其中a1=1,a2=2,若an<an+1對?n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是[0,+∞).

分析 把已知遞推式變形,可得數(shù)列{$\frac{{a}_{n}}{n}$}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)均是以λ為公差的等差數(shù)列,分類求其通項(xiàng)公式,代入an<an+1,分離參數(shù)λ求解.

解答 解:由nan+2-(n+2)an=λ(n2+2n)=λn(n+2),
得$\frac{{a}_{n+2}}{n+2}-\frac{{a}_{n}}{n}=λ$,
∴數(shù)列{$\frac{{a}_{n}}{n}$}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)均是以λ為公差的等差數(shù)列,
∵a1=1,a2=2,
∴當(dāng)n為奇數(shù)時(shí),$\frac{{a}_{n}}{n}=1+λ(\frac{n+1}{2}-1)=\frac{n-1}{2}λ+1$,
∴${a}_{n}=\frac{{n}^{2}-n}{2}λ+n$;
當(dāng)n為偶數(shù)時(shí),$\frac{{a}_{n}}{n}=1+λ(\frac{n}{2}-1)=\frac{n-2}{2}λ+1$,
∴${a}_{n}=\frac{{n}^{2}-2n}{2}λ+n$.
當(dāng)n為奇數(shù)時(shí),由an<an+1,得$\frac{{n}^{2}-n}{2}λ+n$<$\frac{(n+1)^{2}-2(n+1)}{2}λ+n+1$,
即λ(n-1)>-2.
若n=1,λ∈R,若n>1則λ>$-\frac{2}{n-1}$,∴λ≥0;
當(dāng)n為偶數(shù)時(shí),由an<an+1,得$\frac{{n}^{2}-2n}{2}λ+n$<$\frac{(n+1)^{2}-(n+1)}{2}λ+n+1$,
即3nλ>-2,∴λ>$-\frac{2}{3n}$,即λ≥0.
綜上,λ的取值范圍為[0,+∞).
故答案為:[0,+∞).

點(diǎn)評 本題考查數(shù)列遞推式,考查了分類求解數(shù)列的通項(xiàng)公式,訓(xùn)練了恒成立問題的求解方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

函數(shù)上單調(diào)遞增,且函數(shù)是偶函數(shù),則下列結(jié)論成立的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,E的右焦點(diǎn)到直線y=x+1的距離為$\sqrt{2}$.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的右頂點(diǎn)為A,不經(jīng)過點(diǎn)A的直線l與橢圓E交于M,N兩點(diǎn),且以MN為直徑的圓過A,求證:直線l恒過定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線y=2x+$\frac{p}{2}$與拋物線x2=2py(p>0)相交于A,B兩點(diǎn),則|AB|等于( 。
A.5pB.10pC.11pD.12p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=a(x-2)ex+lnx+$\frac{1}{x}$存在唯一的極值點(diǎn),且此極值大于0,則( 。
A.0≤a<$\frac{1}{e}$B.0≤a<$\frac{1}{{e}^{2}}$C.-$\frac{1}{e}$<a<$\frac{1}{{e}^{2}}$D.0≤a<$\frac{1}{e}$或a=-$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義域?yàn)镽的函數(shù)f(x)滿足:f(x+2)=2f(x),當(dāng)x∈[0,2)時(shí),$f(x)=\left\{\begin{array}{l}{x^2}-x,x∈[0,1)\\-{(\frac{1}{2})^{|x-\frac{3}{2}|}},x∈[1,2)\end{array}\right.$,若x∈[-4,-2)時(shí),$f(x)≥\frac{1}{4}-\frac{1}{2t}$恒成立,則實(shí)數(shù)t的取值范圍是( 。
A.$(0,\frac{2}{5}]$B.$(0,\frac{2}{3}]$C.(0,1]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.天氣預(yù)報(bào)說,在今后三天中,每天下雨的概率均為0.4,有人用計(jì)算機(jī)產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),他用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,產(chǎn)生3個(gè)隨機(jī)數(shù)作為一組,產(chǎn)生20組隨機(jī)數(shù)如下:027   556   488   730   113   537   989   907   966   191   925   271   932   812   458   569   683   431   257   393,以此預(yù)測這三天中至少有兩天下雨的概率大約是( 。
A.0.30B.0.33C.0.35D.0.375

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.${e^{ln3}}+{(\frac{1}{8})^{-\frac{2}{3}}}$=7.(其中e是自然對數(shù)的底數(shù),e=2.718828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.正項(xiàng)數(shù)列{an}滿足a1=$\frac{1}{4}$,a1+a2+…+an=2anan+1,則通項(xiàng)an=$\frac{n}{4}$.

查看答案和解析>>

同步練習(xí)冊答案