(12分)如圖,已知四棱錐的底面為等腰梯形,,,垂足為是四棱錐的高。

(Ⅰ)證明:平面 平面;

(Ⅱ)若,60°,求四棱錐的體積。

 

【答案】

(1)因為PH是四棱錐P-ABCD的高,

所以AC⊥PH,   (2分)又AC⊥BD,PH,PD都在平面PHD內(nèi)且PH∩BD=H   (4分)

所以AC⊥平面PBD  故平面PAC⊥平面PBD.                                (6分)

(2)因為ABCD為等腰梯形,AB//CD,ACBD,AB=  所以HA=HB=

因為APB=ADR=600   所以PA=PB=,HD=HC=1  可得PH=

等腰梯形ABCD的面積為S=AC×BD =2+.      …….(.9分)

所以四棱錐的體積為V=×(2+)×=   …….(.12分)

【解析】略         

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)    如圖:已知四棱錐的底面是平行四邊形,,垂足在邊上,△是等腰直角三角形,,四面體的體積為

(1)求面與底面所成的銳二面角的大;

(2)求點到面的距離;

(3)若點在直線上,且,求的值.

                                           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐的底面是正方形,⊥底面,且,點、分別在側(cè)棱上,且 

(Ⅰ)求證:⊥平面;

(Ⅱ)若,求平面與平面的所成銳二面角的大小 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆云南省昆明一中高三上學(xué)期第一次月考試題文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)
如圖,已知四棱錐的底面是正方形,,且,點分別在側(cè)棱、上,且

(Ⅰ)求證:;
(Ⅱ)若,求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆重慶市高二上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知四棱錐的底面是正方形,⊥底面,且,點、分別為側(cè)棱、的中點 

(1)求證:∥平面

(2)求證:⊥平面.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年西藏拉薩中學(xué)高三第七次月考考試理科數(shù)學(xué) 題型:解答題

 

(12分)

如圖,已知四棱錐的底面為矩形,平面分別為的中點.

(Ⅰ)求證:;

(Ⅱ)求二面角的大小值.

 

 

查看答案和解析>>

同步練習(xí)冊答案