3.一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為(  )
A.$\frac{4}{125}$B.$\frac{7}{125}$C.$\frac{2}{25}$D.$\frac{4}{25}$

分析 基本事件總數(shù)n=53=125,再利用列舉法求出取得三個球的編號之和不小于13包含的基本事件個數(shù),由此能求出取得三個球的編號之和不小于13的概率.

解答 解:∵一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,
從中有放回地每次取一個球,共取3次,
∴基本事件總數(shù)n=53=125,
取得三個球的編號之和不小于13包含的基本事件有:
(3,5,5),(5,3,5),(5,5,3),(4,5,5),(5,4,5),(5,5,4),(5,5,5),
共有7個,
∴取得三個球的編號之和不小于13的概率為p=$\frac{7}{125}$.
故選:B.

點評 本題考查概率的求法,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題,解題時要注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.有一凸透鏡其剖面圖(如圖)是由橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1和雙曲線$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(a>m>0)的實線部分組成,已知兩曲線有共同焦點M、N;A、B分別在左右兩部分實線上運動,則△ANB周長的最小值為( 。
A.2(a-m)B.(a-m)C.2(b-n)D.2(a+m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0 ) 經(jīng)過點 P(1,$\frac{\sqrt{3}}{2}$),離心率 e=$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點E (0,-2 ) 的直線l與C相交于P,Q 兩點,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.各項均為正數(shù)的等比數(shù)列{an}的前n項和為Sn,若S4=10,S12=130,則S8=(  )
A.-30B.40C.40或-30D.40或-50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)的定義域為R,其圖象關(guān)于點(1,0)中心對稱,其導(dǎo)函數(shù)為f′(x),當(dāng)x<1時,(x-1)[f(x)+(x-1)f′(x)]>0,則不等式xf(x+1)>f(2)的解集為(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若(x+$\frac{1}{3x}$)n的展開式中前三項的系數(shù)分別為A、B、C,且滿足4A=9(C-B),則展開式中x2的系數(shù)為$\frac{56}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.定義:設(shè)f(x)為(a,b)上的可導(dǎo)函數(shù),若f′(x)為增函數(shù),則稱f(x)為(a,b)上的凸函數(shù).
(1)判斷函數(shù)y=x3與y=lg$\frac{1}{x}$是否為凸函數(shù);
(2)設(shè)f(x)為(a,b)上的凸函數(shù),求證:若λ12+…+λn=1,λi>0(i=1,2,…,n),則?xi∈(a,b)(i=1,2,…,n)恒有λ1f(x1)+λ2f(x2)+…+λnf(xn)=f(λ1x12x2+…+λnxn)成立;
(3)設(shè)a,b,c>0,n∈N*,n≥b,求證:an+bn+cn≥an-5b3c2+bn-5c3a2+cn-5a3b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點P(-3,5),Q(2,1),向量$\overrightarrow{m}$=(2λ-1,λ+1),若$\overrightarrow{PQ}$∥$\overrightarrow{m}$,則實數(shù)λ等于(  )
A.$\frac{1}{13}$B.$-\frac{1}{13}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若$cosα=\frac{3}{5},α∈(0,\frac{π}{2})$,則s$in(α-\frac{π}{6})$的值為$\frac{{4\sqrt{3}-3}}{10}$.

查看答案和解析>>

同步練習(xí)冊答案