14.比較大小:$cos(-\frac{47π}{10})$>cos(-$\frac{44π}{9}$)

分析 利用誘導公式化簡后,根據(jù)三角函數(shù)的單調(diào)性進行判斷即可.

解答 解:cos(-$\frac{47}{10}$π)=cos(-4π-$\frac{7π}{10}$)=cos(-$\frac{7π}{10}$)=cos$\frac{7π}{10}$,
cos(-$\frac{44}{9}$π)=cos(-4π-$\frac{8π}{9}$)=)=cos(-$\frac{8π}{9}$)=cos$\frac{8π}{9}$,
∵y=cosx在(0,π)上為減函數(shù),
∴cos$\frac{7π}{10}$>cos$\frac{8π}{9}$,
即cos(-$\frac{47}{10}$π)>cos(-$\frac{44}{9}$π).
故答案為:>.

點評 本題主要考查函數(shù)的大小比較,根據(jù)三角函數(shù)的誘導公式以及三角函數(shù)的單調(diào)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.過雙曲線的一個焦點F2作垂直于實軸的弦PQ,F(xiàn)1是另一焦點,若△PF1Q是等腰直角三角形,則雙曲線的離心率e等于( 。
A.$\sqrt{2}-1$B.$\sqrt{2}$C.$\sqrt{2}+1$D.$\sqrt{2}+2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若f(x)=2cos(ωx+φ)+m(ω>0)對任意實數(shù)t都有f(t+$\frac{π}{4}$)=f(-t),且f($\frac{π}{8}$)=-1,則實數(shù)m的值等于( 。
A.-3或1B.-1或3C.±3D.±1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ax+b(a>0,a≠1)滿足f(x+y)=f(x)•f(y)且f(3)=8.
(1)求a,b的值.
(2)若方程|f(x)-1|=m的有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.從1,2,3,4這4個數(shù)中,任取兩個數(shù),兩個數(shù)都是奇數(shù)的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.向量$\vec a$=(1,2),$\vec b$=(1,1),則$\vec a$與$\overrightarrow$的夾角的余弦值為$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若x∈(0,$\frac{π}{2}$),則( 。
A.x2cos2x>1B.$\frac{{x}^{4}}{si{n}^{2}x}$>$\frac{3}{4}$C.x2+cos2x>1D.x4-sin2x>$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=ex(其中e為自然對數(shù)的底數(shù)),g(x)=$\frac{n}{2}$x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1-$\frac{n}{2}$,求T(x)在[0,1]上的最大值;
(2)若m=-$\frac{15}{2}$,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2<$\frac{15}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x∈R|2x-3≥0},集合B={x∈R|(x-2)(x-1)<0},則A∩B=( 。
A.{x|x≥$\frac{3}{2}$}B.{x|$\frac{3}{2}$≤x<2}C.{x|1<x<2}D.{x|$\frac{3}{2}$<x<2}

查看答案和解析>>

同步練習冊答案