如圖所示,貓兒洲距離濱江路上最近的點P的距離是3km,(假設(shè)濱江路是直線,貓兒洲看成一個點)從點P沿濱江路12km處有一個俱樂部.

(1)假設(shè)一個人駕駛的小船的平均速度為3km/h,步行的速度是6km/h,t(單位:h)表示他從貓兒洲到俱樂部的時間,x(單位:km)表示此人將船停在濱江路處距P點的距離.請將t表示為x的函數(shù).
(2)如果將船停在距P點4km,那么從貓兒洲到俱樂部要多少時間?
考點:函數(shù)解析式的求解及常用方法
專題:應(yīng)用題
分析:先求出坐船的路程和步行路程,再表示出坐船所用的時間=
坐船所走路程
船速
,步行所用的時間=
步行所走路程
步行速度
;總時間t=坐船所用的時間+步行所用的時間.
解答: 解:(1)由勾股定理得坐船所走路程為:
x2+9
,
∴坐船所用的時間=
x2+9
3

又∵點p到俱樂部的總長為12km,
∴停船處到俱樂部的距離即步行的路程為:(12-x)km,
∴步行所用的時間=
12-x
6
,
∴總時間t=坐船所用的時間+步行所用的時間.
t(x)=
x2+9
3
+
12-x
6
;
(2)由(1)得:t(4)=
42+9
3
+
12-4
6
=3.
點評:本題是一道關(guān)于函數(shù)解析式的求解問題,常見的題型有兩問,第一問求函數(shù)解析式,第二問代入求值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-x2+(2-a)x(a>0).
(Ⅰ)當(dāng)a=2時,求曲線y=f(x)在線x=1處的切線方程;
(Ⅱ)若函數(shù)f(x)的最大值是
1
2
,求a的值;
(Ⅲ)令g(x)=f(x)+2(a-1)x,若y=g(x)在區(qū)間(0,2)上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(ωx+φ)(ω>0,0<φ<
π
2
)的部分圖象,如圖所示.
(1)求函數(shù)解析式;
(2)若方程f(x)=m在[-
π
12
,
13π
12
]有兩個不同的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一段時間內(nèi),某種商品價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)如下表:
價格x 1.4 1.6 1.8 2 2.2
需求量y 12 10 7 5 3
(1)畫出散點圖;
(2)求出y對x的線性回歸方程
y
=bx+a;
(3)如果價格定為1.9萬元,預(yù)測需求量大約是多少.(結(jié)果精確到0.01t)
參考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn滿足:Sn=
3
2
an+n-3.
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令cn=log3(a1-1)+log3(a2-1)+…+log3(an-1),對任意n∈N*,是否存在正整數(shù)m,使
1
c1
+
1
c2
+…+
1
cn
m
3
都成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓臺的上、下底面半徑分別是10cm和20cm,它的側(cè)面展開圖的扇環(huán)的圓心角是60°,那么圓臺的表面積、體積分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a、b、c分別為角A、B、C的對邊,求證:a2sin2B+b2sin2A=2absinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4.
(Ⅰ)求證:BD⊥A1C;
(Ⅱ)求二面角A-A1C-D1的余弦值;
(Ⅲ)在線段CC1上是否存在點P,使得平面A1CD1⊥平面PBD,若存在,求出
CP
PC1
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
3
,b=1,c=2,則A等于
 

查看答案和解析>>

同步練習(xí)冊答案