設(shè)定函數(shù) (>0),且方程的兩個根分別為1,4。
(Ⅰ)當(dāng)=3且曲線過原點(diǎn)時,求的解析式;
(Ⅱ)若無極值點(diǎn),求a的取值范圍。
(Ⅰ);(Ⅱ)

試題分析:由 得
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240125244941042.png" style="vertical-align:middle;" />的兩個根分別為1,4,所以       (*)
(Ⅰ)當(dāng)時,又由(*)式得
解得
又因?yàn)榍過原點(diǎn),所以

(Ⅱ)由于a>0,所以“在(-∞,+∞)內(nèi)無極值點(diǎn)”等價于“在(-∞,+∞)內(nèi)恒成立”。
由(*)式得。

     得
的取值范圍
點(diǎn)評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,(II)將函數(shù)問題轉(zhuǎn)化成不等式恒成立問題,通過對方程實(shí)根的討論及研究,確定得到參數(shù)的范圍。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對于任意的
 ,函數(shù)在區(qū)間 上總不是單調(diào)函數(shù),
求實(shí)數(shù)的取值范圍;
(3)求證 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求的值;
(2)求的單調(diào)區(qū)間;
(3)若當(dāng)時恒有成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象經(jīng)過點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的兩個極值點(diǎn)分別為x1,x2,且x1Î(0, 1),x2Î(1, +¥),記分別以m,n為橫、縱坐標(biāo)的點(diǎn)P(m,n)表示的平面區(qū)域?yàn)镈,若函數(shù)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù);

(1)若處取極值,求的值;
(2)設(shè)直線將平面分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四個區(qū)域(不包括邊界),若圖象恰好位于其中一個區(qū)域,試判斷其所在區(qū)域并求出相應(yīng)的的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).()
(1)當(dāng)時,試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則      ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線的一條切線的斜率為,則切點(diǎn)的橫坐標(biāo)為_____   

查看答案和解析>>

同步練習(xí)冊答案