14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的實(shí)軸長為2,離心率為$\sqrt{5}$,則雙曲線的方程為(  )
A.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{16}$=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$$-\frac{{y}^{2}}{3}$=1D.x2$-\frac{{y}^{2}}{6}$=1

分析 利用雙曲線的簡單性質(zhì),求出a,b,即可得到雙曲線方程.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>b>0)的實(shí)軸長為2,可得a=1,離心率為$\sqrt{5}$,可得$\frac{c}{a}=\sqrt{5}$,可得c=$\sqrt{5}$,
則b=$\sqrt{{c}^{2}-{a}^{2}}$=2.
則雙曲線的方程為:x2-$\frac{{y}^{2}}{4}$=1.
故選:B.

點(diǎn)評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,雙曲線方程的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F1,F(xiàn)2是雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),且F2是拋物線C2:y2=2px(p>0)的焦點(diǎn),P是雙曲線C1與拋物線C2在第一象限內(nèi)的交點(diǎn),線段PF2的中點(diǎn)為M,且|OM|=$\frac{1}{2}$|F1F2|,其中O為坐標(biāo)原點(diǎn),則雙曲線C1的離心率是( 。
A.2+$\sqrt{3}$B.1+$\sqrt{2}$C.2+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若($\frac{1}{2}$x-2y)2n+1的展開式中前n+1項(xiàng)的二項(xiàng)式系數(shù)之和為64,則該展開式中x4y3的系數(shù)是( 。
A.-$\frac{35}{2}$B.70C.$\frac{35}{2}$D.-70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將數(shù)字“124467”重新排列后得到不同的偶數(shù)個(gè)數(shù)為( 。
A.72B.120C.192D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)z=$\frac{2+i}{1+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的虛部是( 。
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.-$\frac{3}{2}$iD.$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|0<x≤3,x∈N},B={x|y=$\sqrt{{x}^{2}-9}$},則集合A∩(∁RB)=( 。
A.{1,2}B.{1,2,3}C.{0,1,2}D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知(a-i)2=-2i,其中i是虛數(shù)單位,a是實(shí)數(shù),則|ai|=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知P是橢圓$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{_{1}^{2}}$=1(a1>b1>0)和雙曲線 $\frac{{x}^{2}}{{a}_{2}^{2}}$-$\frac{{y}^{2}}{_{2}^{2}}$=1(a2>0,b2>0)的一個(gè)交點(diǎn),F(xiàn)1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),∠F1PF2=$\frac{π}{3}$,則$\frac{_{1}}{_{2}}$的值是( 。
A.3B.-3C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從圓x2+y2-2x-2y+1=0外一點(diǎn)P(3,2)向這個(gè)圓作兩條切線,則兩條切線夾角的余弦值為(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

同步練習(xí)冊答案