已知拋物線y2=2px(p>0)與雙曲線
x2
a2
-
y2
b2
=1,(a>0,b>0)有相同的焦點F,點A是兩曲線的一個交點,且AF⊥x軸,若l為雙曲線的一條漸近線,則l的傾斜角所在的區(qū)間可能是( 。
A.(0,
π
6
)
B.(
π
6
π
4
)
C.(
π
4
,
π
3
)
D.(
π
3
,
π
2
)
拋物線的焦點坐標(biāo)為(
p
2
,0);雙曲線的焦點坐標(biāo)為(c,0)
所以p=2c
∵點A 是兩曲線的一個交點,且AF⊥x軸,
將x=c代入雙曲線方程得到
A(c,
b2
a

將A的坐標(biāo)代入拋物線方程得到
b4
a2
=2pc
4a4+4a2b2-b4=0
解得
b
a
=
2+2
2

∵雙曲線的漸近線的方程為y=±
b
a
x
設(shè)傾斜角為α則tanα=
b
a
=
2+2
2
3

∴α>
π
3

故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l.
(1)求拋物線上任意一點Q到定點N(2p,0)的最近距離;
(2)過點F作一直線與拋物線相交于A,B兩點,并在準(zhǔn)線l上任取一點M,當(dāng)M不在x軸上時,證明:
kMA+kMBkMF
是一個定值,并求出這個值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點.求證:直線AB經(jīng)過點M的充要條件是OA⊥OB,其中O是坐標(biāo)原點.

查看答案和解析>>

同步練習(xí)冊答案