(本小題滿分分)設(shè)數(shù)列的前項和為,且,.
(Ⅰ)求,,,并求出數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列的前項和為,試求的取值范圍.

(1)=5,=9,=13;(2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:廣州省高州一中2009-2010學年高二學科競賽(數(shù)學理) 題型:解答題

(本小題滿分14分)
下表給出的是由n×n(n≥3,n∈N*)個正數(shù)排成的n行n列數(shù)表,表示第i行第j列的數(shù),表中第一列的數(shù)從上到下依次成等差數(shù)列,其公差為d ,表中各行中每一行的數(shù)從左到右依次都成等比數(shù)列,且所有公比相等,公比為,若已知


























(1)求的值;
(2)求用表示的代數(shù)式;
(3)設(shè)表中對角線上的數(shù),,,……,組成一列數(shù)列,設(shè)Tn=+++……+ 求使不等式成立的最小正整數(shù)n.     

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年黑龍江省齊齊哈爾市高三二模理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

一個不透明的袋子中裝有4個形狀相同的小球,分別標有不同的數(shù)字2,3,4,,現(xiàn)從袋中隨機摸出2個球,并計算摸出的這2個球上的數(shù)字之和,記錄后將小球放回袋中攪勻,進行重復試驗。記A事件為“數(shù)字之和為7”.試驗數(shù)據(jù)如下表

摸球總次數(shù)

10

20

30

60

90

120

180

240

330

450

“和為7”出現(xiàn)的頻數(shù)

1

9

14

24

26

37

58

82

109

150

“和為7”出現(xiàn)的頻率

0.10

0.45

0.47

0.40

0.29

0.31

0.32

0.34

0.33

0.33

(參考數(shù)據(jù):

(Ⅰ)如果試驗繼續(xù)下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“數(shù)字之和為7”的頻率將穩(wěn)定在它的概率附近。試估計“出現(xiàn)數(shù)字之和為7”的概率,并求的值;

(Ⅱ)在(Ⅰ)的條件下,設(shè)定一種游戲規(guī)則:每次摸2球,若數(shù)字和為7,則可獲得獎金7元,否則需交5元。某人摸球3次,設(shè)其獲利金額為隨機變量元,求的數(shù)學期望和方差。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年甘肅省河西五市高三第二次聯(lián)合考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

在一次人才招聘會上,有三種不同的技工面向社會招聘,已知某技術(shù)人員應聘三種技工被錄用的概率分別是0.8、0.5、0.2(允許技工人員同時被多種技工錄用).

(1)求該技術(shù)人員被錄用的概率;

(2)設(shè)表示該技術(shù)人員被錄用的工種數(shù)與未被錄用的工種數(shù)的乘積,求的分布列和數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年甘肅省高三第十次月考理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

    在一次人才招聘會上,有三種不同的技工面向社會招聘,已知某技術(shù)人員應聘三種技工被錄用的概率分別是0.8、0.5、0.2(允許技工人員同時被多種技工錄用).

    (1)求該技術(shù)人員被錄用的概率;

(2)設(shè)表示該技術(shù)人員被錄用的工種數(shù)與未被錄用的工種數(shù)的乘積,求的分布列和數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年山東省萊蕪市高三上學期期末考試數(shù)學文卷 題型:解答題

(本小題滿分12分)

某班全部名學生在一次百米測試中,成績?nèi)拷橛?3秒和18秒之間。將測試結(jié)果按如下方式分為五組:第一組[13,14);第二組[14,15);…;第五組[17,18],表是按上述分組方式得到的頻率分布表。

分 組

頻數(shù)

頻率

[13,14)

[14,15)

[15,16)

[16,17)

[17,18]

(1)求及上表中的的值;

(2)設(shè)m,n是從第一組或第五組中任意抽取的兩名學生的百米測試成績,求事件“”的概率.

 

 

查看答案和解析>>

同步練習冊答案