函數(shù)
(1)若f(x)在點(1,f(1))處的切線斜率為,求實數(shù)a的值;
(2)若f(x)在x=1取得極值,求函數(shù)f(x)的單調區(qū)間.
【答案】分析:(1)求出函數(shù)的導函數(shù),把x=1代入導函數(shù)得到切線的斜率k,讓k=即可得到a的值;
(2)由f(x)在x=1取得極值得到f′(1)=0,求出a的值,根據(jù)函數(shù)的定義域為x≠-1,分區(qū)間利用x的范圍討論導函數(shù)的正負,得到函數(shù)的單調區(qū)間.
解答:解:(1),
若f(x)在點(1,f(1))處的切線斜率為,則
所以,,得a=1.
(2)因為f(x)在x=1處取得極值,
所以f'(1)=0,即1+2-a=0,a=3,

因為f(x)的定義域為{x|x≠-1},所以有:

所以,f(x)的單調遞增區(qū)間是(-∞,-3),(1+∞),單調遞減區(qū)間是(-3,-1),(-1,1).
點評:考查學生會利用導數(shù)研究曲線上某點的切線方程,會利用導數(shù)研究函數(shù)的單調性,會利用導數(shù)研究函數(shù)的極值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
(1)若f(x)=cosx,x∈[0,π],試寫出f1(x),f2(x)的表達式;
(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對應的k;如果不是,請說明理由;
(3)已知b>0,函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+
t
x
有如下性質:如果常數(shù)t>0,那么該函數(shù)在(0,
t
]上是減函數(shù),在[
t
,+∞)上是增函數(shù).
(1)若f(x)=x+
a
x
,函數(shù)在(0,a]上的最小值為4,求a的值;
(2)對于(1)中的函數(shù)在區(qū)間A上的值域是[4,5],求區(qū)間長度最大的A(注:區(qū)間長度=區(qū)間的右端點-區(qū)間的左斷點);
(3)若(1)中函數(shù)的定義域是[2,+∞)解不等式f(a2-a)≥f(2a+4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x),g(x)都在區(qū)間I上有定義,對任意x∈I,都有|f(x)-g(x)|≤1成立,則稱函數(shù)f(x),g(x)為區(qū)間I上的“伙伴函數(shù)”.
(1)若f(x)=lgx,g(x)=lg(x+1)為區(qū)間[m,+∞)上的“伙伴函數(shù)”,求m的范圍.
(2)判斷f(x)=4x,g(x)=2x-1是否為區(qū)間(-∞,0]上的“伙伴函數(shù)”?
(3)若f(x)=x2+
12
,g(x)=kx為區(qū)間[1,2]上的“伙伴函數(shù)”,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
ax2+x+b(a≥0)為函數(shù)f(x)的導函數(shù).
(1)若f(x)在x=-3處取到極大值-2,求a,b的值;
(2)若函數(shù)g(x)=e-ax•f′(x),求函數(shù)g(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對定義在區(qū)間D上的函數(shù)f(x),若存在常數(shù)k>0,使對任意的x∈D,都有f(x+k)>f(x)成立,則稱f(x)為區(qū)間D上的“k階增函數(shù)”.
(1)若f(x)=x2為區(qū)間[-1,+∞)上的“k階增函數(shù)”,則k的取值范圍是
 

(2)已知f(x)是定義在R上的奇函數(shù),且當x≥0,f(x)=|x-a2|-a2.若f(x)為R上的“4階增函數(shù)”,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案