若不等式|x-1|+|x+2|≥4a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為_(kāi)_______.
(-∞,log43]
分析:若不等式|x+2|+|x+1|>k恒成立,只需 k小于|x+2|+|x+1|的最小值即可.由絕對(duì)值的幾何意義,,求出|x-1|+|x+2|取得最小值3,得4a≤3求出a的范圍.
解答:若不等式|x-1|+|x+2|≥4a恒成立,
只需 4a小于等于|x-1|+|x+2|的最小值即可.
由絕對(duì)值的幾何意義,|x-1|+|x+2|表示在數(shù)軸上點(diǎn)x到1,-2點(diǎn)的距離之和.
當(dāng)點(diǎn)x在1,-2點(diǎn)之間時(shí)(包括-1,-2點(diǎn)),即-2≤x≤1時(shí),,|x-1|+|x+2|取得最小值3,
∴4a≤3
所以a≤log43]
故答案為(-∞,log43]
點(diǎn)評(píng):本題考查不等式恒成立問(wèn)題,本題中注意到|x-1|+|x+2|有明顯的幾何意義,即絕對(duì)值的幾何意義,數(shù)形結(jié)合使問(wèn)題輕松獲解.