【題目】已知圓的方程是,則經(jīng)過圓上一點的切線方程( )

A. B. C. D.

【答案】A

【解析】當斜率不存在時, 切線方程為;當斜率存在時, 設切線方程為,即,圓心到切線的距離等于半徑,所以,無解,斜率存在時不成立,故應選A.

點睛:本題考查學生的是直線與圓的位置關系里的求切線方程,屬于基礎題目. 判斷直線與圓的位置關系一般有兩種方法: 1.代數(shù)法:將直線方程與圓方程聯(lián)立方程組,再將二元方 程組轉化為一元二次方程,該方程解的情況即對應直 線與圓的位置關系.這種方法具有一般性,適合于判 斷直線與圓錐曲線的位置關系,但是計算量較大. 2.幾何法:圓心到直線的距離與圓半徑比較大小,即可判斷直線與圓的位置關系.這種方法的特點是計算量 較。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,DA⊥AB,

DE1,EC,EA2,

∠ADC,∠BEC.

(Ⅰ)sin∠CED的值;

(Ⅱ)BE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,一個動圓截直線所得的弦長分別為8,4.

(1)求動圓圓心的軌跡方程;

(2)在軌跡上是否存在這樣的點:它到點的距離等于到點的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,A、B兩點都在河的對岸(不可到達),為了測量A、B兩點間的距離,選取一條基線CD,A、B、C、D在一平面內.測得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,則AB=(

A. m
B.200 m
C.100 m
D.數(shù)據(jù)不夠,無法計算

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,則sinα+cosα的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校學生的視力情況,現(xiàn)采用隨機抽樣的方法從該校的兩班中各抽取名學生進行視力檢測,檢測的數(shù)據(jù)如下:

名學生的視力檢測結果:

名學生的視力檢測結果:

(Ⅰ)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結果看,哪個班的學生的視力較好?并計算班的名學生視力的方差;

(Ⅱ)現(xiàn)從班的上述名學生中隨機選取名,求這名學生中至少有名學生的視力低于的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1OF2的中點分別為B1,B2,且△AB1B2是面積為1的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)點M為該橢圓上任意一點,求|MA|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , 為棱的中點.

(1)求證: 平面;

(2)若直線與平面所成的角為30°,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上橫坐標為的點到拋物線頂點的距離與該點到拋物線準線的距離相等。

(1)求拋物線的方程;

(2)設直線與拋物線交于兩點,若,求實數(shù)的值。

查看答案和解析>>

同步練習冊答案