2、已知圓(x-2)2+(y+1)2=16的一條直徑通過直線x-2y+3=0被圓所截弦的中點(diǎn),則該直徑所在的直線方程為( 。
分析:由題意求出圓心坐標(biāo)(2,-1),再由弦的中點(diǎn)與圓心的連線與弦所在的直線垂直求出斜率,進(jìn)而求出該直徑所在的直線方程
解答:解:由題意知,已知圓的圓心坐標(biāo)(2,-1)
∵弦的中點(diǎn)與圓心的連線與弦所在的直線垂直得,且方程x-2y+3=0
∴該直徑所在的直線的斜率為:-2,∴該直線方程y+1=-2(x-2);
即2x+y-3=0,
故選C.
點(diǎn)評(píng):本題考查了過弦中點(diǎn)的直徑和弦所在的直線的位置關(guān)系,直線垂直和直線的斜率關(guān)系,進(jìn)而求直線方程;結(jié)合圖形會(huì)有助于理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-2)2+y2=1經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),則此橢圓的離心率e=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-2)2+(y-2)2=16與直線y=kx交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).若
OA
+
OB
=
0
,則|AB|=
4
2
4
2

查看答案和解析>>

同步練習(xí)冊(cè)答案